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MEINEN ELTERN



It is good to have an end to journey towards; but it is the journey that
matters in the end.

Ursula K. Le Guin
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Introduction

1.1 Traffic — why physicists care

Certainly, traffic is an important subject that affects us all: when we commute to and
from work, or when we are stuck in a traffic jam, we are part of traffic. But what makes
traffic an interesting research topic, and why is it physicists who show a particular
interest in traffic and related systems?

At first glance, it may not be obvious why physicists show so much interest in
vehicular traffic. Motion, acceleration, and deceleration of an object such as a vehicle
are topics, which are well understood since Isaac Newton. So, why still care about
traffic? Actually, things get far more complicated when we consider several vehicles and
the interaction between them.

This interaction, which forces some vehicles to brake and allows others to accelerate,
leads to collective effects. Finally, when we speak of “particles” instead of vehicles,
traffic becomes a dynamical system of interacting particles. This formulation better
illustrates the relation between traffic and other physical systems; molecules in a liquid
or electrons in a solid are just other examples of interacting many-particle systems.

These analogies attracted the interest of physicists, who studied traffic with the same
methods as other physical systems. Together with Robert Herman, who is today better
known for his theoretical prediction of the cosmic microwave background radiation [1],
later Nobel laureate Ilya Prigogine wrote in 1971:

Traffic flow can be measured, in principle, in the same way as can be
measured any flow of fluid; also, the relevant parameters that determine the
value of the flow (such as density of traffic, or number of lanes on a highway)
can be identified and varied. [115, p. xV]

Of course, one should not overstrain these analogies. There are some distinct differences
between vehicles on a road and molecules in a liquid. Vehicles are driven by humans,
who all have different attitudes and exhibit different driving behaviors (e.g., some drivers
may deliberately ignore a speed limit whereas others are overcautious). Molecules, on
the other hand, always obey the laws of physics!
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Yet the variety of driving characteristics does not change the qualitative features
of vehicular traffic ([56, ch. 20] and [62, 120]). Despite this inter-driver variability,
there are, after all, some goals which are common to all drivers and which dominate
their collective motion: drivers try to avoid collisions, and they want to reach their
destination in a reasonable time. These goals may serve as basic principles of any traffic
flow theory.

All of the above observations justify the study of traffic with the tools of statistical
mechanics. Indeed, treating traffic as a physical system has allowed physicists to gain a
deeper insight into the various aspects of (vehicular) traffic. It is, for instance, a common
observation that interactions between vehicles become stronger and more frequent with
increasing traffic density. Drivers then have to accelerate and to brake permanently to
keep a desired distance to the vehicle ahead. Finally, when traffic becomes too dense,
subsequent braking events may lead to a breakdown of traffic flow: congestion occurs!

Generally, when a slight variation of the system’s parameters (e.g., density) abruptly
changes the system’s behavior—resulting in a very characteristic change of one (or more)
observable(s)—physicists usually speak of a phase transition. In fact, there is evidence
that such a breakdown of traffic flow is a first-order phase transition [87, 113]. There is
also evidence of self-organized criticality [6, 101] and the formation of shock waves [21,
92, 121] to name but a few examples illustrating the variety of physical phenomena that
traffic exhibits.

During the past decades, traffic research has produced a multitude of mathematical
and computational models to study traffic flow on several levels of detail. The quality of
these models has been steadily improved, not least because of the increased availability
of empirical and experimental data (e.g., provided by stationary detectors, aerial
photographs, or recorded vehicle trajectories). We are now able to understand (at least
some of) the principles and mechanisms responsible for a traffic breakdown and the
resulting spatiotemporal traffic dynamics. This knowledge also enables us to control, to
improve, and to simulate traffic flow. As we will see, computers have become a very
valuable tool of traffic research. (For one of the earliest applications of computers to
the study of traffic flow, see [30, 31].)

It is no surprise that computer simulations, which have become an integral part
of modern research, also play a central role in the study of traffic low. As traffic
phenomena are the result of hundreds or even thousands of interacting vehicles, real-
world experiments are often intractable for practical or financial constraints. Hence, the
impact of new technologies (e.g., such as on-ramp metering) can more easily be studied
with the help of traffic simulations. This, however, requires the underlying traffic model
to correctly reproduce the empirical features of traffic and to allow for a fine grained
analysis.

The intention of this thesis is to investigate both aspects. We want to investigate
the ability of selected traffic models to reproduce the dynamics of real traffic flow.
Afterwards, we want to use the results to study the influence of vehicle-to-vehicle
communication on traffic flow, in particular its potential to reduce congestion.
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1.2 Outline of the thesis

This thesis starts with a review of the most important concepts of traffic flow in
chapter 2. We describe how empirical data are measured via loop detectors and how
the fundamental observables—flow J, vehicle density p, and velocity v—are related.
We also explain the term “traffic breakdown” and show that it can be interpreted as a
boundary-induced phase transition, known from other non-equilibrium systems. This,
finally, leads us to Kerner’s three-phase traffic theory, of which the basic ideas we will
briefly explain. Notwithstanding the obvious analogies between traffic and other physical
systems, we have to note that the terms “phase” and “phase transition” are used in a
less strict manner than in the physical literature.

In chapter 3 we investigate how well three selected microscopic traffic models can
reproduce such a breakdown (i.e., the transition from free flow to congested traffic). To
allow not only for a qualitative but also for a quantitative analysis, our investigation is
based on empirical traffic data. To study the breakdown’s spatiotemporal dynamics, we
trace its propagation over several detector cross-sections a few kilometers apart. Besides
the overall agreement with the empirical data, we also study some modeling related
aspects (e.g., the length of vehicles or the setup of the downstream boundary) and their
influence on the results.

From the three models, we select the comfortable driving model (CDM) for a more
detailed analysis in chapter 4. There, we study the spatiotemporal patterns resulting
from different inflow and outflow probabilities of an open road segment. Based on time
series of local measurements, the local traffic states are assigned to different traffic
phases according to Kerner’s three-phase traffic theory. For this classification we use
the rule-based FOTO-method, which was developed by Kerner et al. [69]. Our analysis
shows that the model is indeed able to reproduce three qualitatively different traffic
phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition,
we investigate the likelihood of transitions between these three traffic phases. We show
that a transition from free flow to a wide moving jam often involves a sequence of two
transitions; first from free to synchronized flow and then from synchronized flow to a
wide moving jam. This, again, is in agreement with empirical results which indicate
that the so called F—S transition (from free flow to synchronized traffic) is much more
likely than a direct F—J transition. For an even deeper analysis we also study single
vehicle data, where we will find evidence that the states classified as “synchronized” in
the CDM are not entirely jam-free. The chapter concludes with a statistical analysis of
the CDM’s deceleration behavior.

In chapter 5 we address a more practical problem. We present a strategy to
reduce traffic congestion with the help of vehicle-to-vehicle communication. Periodically
emitted status messages are used to analyze traffic flow and to warn other drivers of a
possible traffic breakdown. Drivers who receive such a warning are told to keep a larger
gap to their predecessor. By doing so, they are less likely the source of perturbations,
which can cause a traffic breakdown. We analyze the proposed strategy via computer
simulations and investigate which fraction of communicating vehicles is necessary for



4 1. Introduction

a beneficial influence on traffic flow to become observable. We show that penetration
rates of 10 % and less can have a significant influence on traffic flow and travel times. In
addition to applying a realistic mobility model (CDM), we further increase the degree of
realism by the use of empirical traffic data from loop detectors on a German Autobahn
and a realistic radio wave propagation model (Nakagami-m).

Motivated by heterogeneous traffic flow with communicating and non-communicating
vehicles, we address a combinatorial problem in chapter 6. If communicating vehicles
can detect the vehicle ahead (and behind) by front (and rear) sensors, the information
gathered by communicating vehicles may considerably exceed the information about
communicating vehicles. This additional information may be of use for traffic surveillance
or traffic state estimation. Therefore, we ask how many non-communicating vehicles
are on average detected by communicating ones. To answer this question, we map
the problem to a discrete random walk in one dimension with a fixed number of steps.
This mapping allows us to determine the detected vehicles for both open and periodic
boundary conditions as well as for the case where communicating vehicles detect both
or only one neighboring vehicle(s). In the random walk picture, where the two vehicles
types (communicating and non-communicating) stand for steps in opposite directions,
non-communicating vehicles are detected whenever the resulting path has a corner. For
open boundary conditions, it turns out that a simple mean field approximation yields
the exact result if communicating vehicles can detect only the vehicle ahead.



Traffic Flow Fundamentals

Gone are the days when Prigogine and Herman complained of “the absence of adequate
experimental data” [115, p. 91]. A large amount of experimental and empirical data has
been collected since then (e.g., [3, 35, 54, 56, 82, 131, 139]). From the analysis of these
data many characteristic features of traffic could be derived and theories be built upon.
In this chapter we will give an overview of the most important findings.

2.1 Traffic Flow Observables

Currently, stationary loop detectors are still the most common source of traffic data.
In their simplest form, loop detectors count the number of passing vehicles, measure
their velocity, and determine the fraction of time that the detector is occupied by a
vehicle. These data are usually aggregated over intervals of duration 7', which we will
indicate by using the notation (-)p. (Later, we will forgo this explicit distinction for
the sake of better readability when it is clear that aggregated data are considered.)
Two fundamental traffic observables, traffic flow and velocity, are directly accessible
from these local measurements, and the third, traffic density, can be estimated from the
previous two.

e The traffic flow J is given by the number of vehicles IV that passed the detector’s
cross-section in the interval [t, ¢+ T'):

(TO)r = = (21)

Although T may be significantly smaller, the flow is typically measured in terms
of vehicles per hour (vehicles/h).

e Similarly, the average velocity or the time-mean speed v(t) of the passing vehicles
is given by the arithmetic mean

N
(v(t)r = %Zvi, (2.2)
=1
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where v; denotes the velocity of the ith vehicle that passed the detector in the
interval [t,t +T).

e The traffic density p, the third fundamental observable, must be measured along
a road segment and cannot be directly obtained from the local measurements
of a stationary detector. However, it can be estimated either from the previous
two observables or from the occupancy Op, which denotes the fraction of time
that the detector is occupied by passing vehicles. Both methods are based on the
hydrodynamic relation

J = pv. (2.3)

The first estimate of p requires solving equation (2.3) for p and then substituting
J and v for (J(t))r and (v(t))r, respectively:

(o(t))yr = SLOIT. (2.4

As the average velocity (v(t))r tends to overestimate the actual velocity on the
road [73], the above equation underestimates the density’s actual value.

Another method of determining the density uses the occupancy:

N
O (t) = % S (2.5)
=1

Here, 7; denotes the time the ith vehicle occupies the detector. Assuming uniform
vehicle lengths and the validity of equation (2.3), one can show the proportionality
of density and occupancy [38]:

(p(t))1 = Op(t)Ppmax- (2.6)

The constant of proportionality pmax denotes the maximum traffic density with a
value of between 115 vehicles/km/lane and 200 vehicles/km/lane [41, 97].

As detectors aggregate these data simultaneously, it is possible to study the relation
between the three observables p, J, and v.

2.2 The Fundamental Diagram

The interdependence between traffic flow and vehicle density is best described by a
diagram. The resulting fundamental diagram' is of great importance in the analysis of
traffic flow. Due to the hydrodynamic relation (2.3), any graphical relation between
two of the three traffic observables is an equivalent representation of the fundamental
diagram. Figure 2.1 shows an empirical fundamental diagram as obtained on a German
Autobahn.

'Note that some authors, including Kerner [56], use the term “fundamental diagram” to indicate
a unique, i.e., functional, relation between density and flow. In the following, we will not distinguish

between functional and non-functional relations, and we will use the terms “fundamental diagram” and
“flow—density relation” synonymously (e.g., see [123, p. 228]).
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Figure 2.1 Two equivalent representations of an empirical fundamental diagram as
recorded on the left lane by detectors on Autobahn A44: (a) shows the relation
between occupancy (i.e., density) and flow, whereas (b) relates the average velocity
to the occupancy. Data points with an average velocity of 70 km/h and above are
associated with free flow. At lower average velocities, the corresponding measurement
is attributed to congested traffic. (The concrete choice of the velocity threshold is to
some extent arbitrary but should be between 60 km/h and 80km/h [15, 69, 138].)

The depicted fundamental diagram exhibits some characteristic features [123]: (i) The
maximum flow of approximately 2500 vehicles/h/lane is reached at an occupancy of Op =
20%. (ii) The flow in congested traffic usually does not exceed 1800 vehicles/h/lane.
(iii) Data points attributed to free flow in figure 2.1a seem to lie on a straight line, whereas
congested data points are scattered widely in a two-dimensional region—especially when
the value of Op lies between 20 % and 30 %.

Based on the observed distribution of data points, various idealized shapes of the
fundamental diagram have been proposed in the past [39, 123]. A prominent example
of a theoretical model for the fundamental diagram is shaped like an inverted A [86], as
depicted in figure 2.2.

For low and high densities, its shape is easy to understand. At low densities, p < pf¢,

all vehicles can travel at their desired or maximum speed, and additional vehicles linearly
increase the total flow. From the fundamental relation (2.3) follows that the slope of
the line F marks the vehicles’ maximum velocity. At high densities, p > pfr®®, on the
other hand, vehicles hinder each other and force others to slow down. In this density
regime, the flow is a monotonic decreasing function of traffic density. The slope of
the congested line J in figure 2.2 corresponds to the typical propagation velocity of a
jam’s downstream front. The intersection point of both curves (F and J) allows for a
very descriptive interpretation, too; it indicates the transition point from jammed to
free traffic where vehicles leave the jam. Interestingly, in this outflow region of a jam,

the flow rate is considerably below its maximum value J¢ . According to empirical
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Jfree ______

max

Jfree o

min

free  pfree density

min pmax

Figure 2.2 Schematic sketch of a fundamental diagram showing a metastable region
between pfT$e and pfree . At lower densities, free flow predominates (line F), whereas

at higher densities congestion occurs (line J).

results [67], the ratio Ji¢¢ /Jfee is approximately 1.5.

At intermediate densities, p'$ < p < pfe | there exists a metastable range. In this
metastable regime, traffic flow may choose either of the two branches (congested or
free flow). Thereby, flow can take more than one value at a given density'. A possible
explanation for this behavior is that in the range pf'$¢ < p < pffe the drivers’ desire to
travel as fast as possible and their tendency to hinder each other compete.

The choice of which branch to take, however, does not only depend on the values
of flow and density but also on the system’s history. Figure 2.3 shows this hysteresis

behavior. In all cases, the maximum flow is observed at an occupancy below 30 %.

I T T 7
1800 [~ -+ A\K} - f -+

=
7
< 1600 [ - 7 I
g
= - . . 1 1 |
E‘ 1400 \:7
2 1200 - =S ; + -+ + .
g
= 1000 - - + -+ + .
N
S s00 - —+ -+ -+ + .
600 L—1 \ L \ ! L1 I R B Lol
20 25 30 35 20 25 30 35 25 30 35 40 45 50 25 35 45 55 152025303540
Op [%] Op [%] Op [%] Op [%] Op [%]
(2) (b) (c) (d) (e)

Figure 2.3 Time-traced flow—occupancy data from two different days (November 2
and 4, 2010) collected on the German Autobahn A44. (Note the different ranges of
the abscissae. For the sake of clarity, the position Op = 30 % is indicated by a thin,
dotted line.)

! According to the three-phase traffic theory (see section 2.5), there even exists a two-dimensional
region of steady states in the flow—density plane.
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The flow can spontaneously switch from free (upper branch) to congested (lower
branch) traffic in this density range for no obvious reason, which means that the flow
drops considerably. Since this decrease in the flow rate corresponds to an effective
reduction of the road’s capacity, one often calls this phenomenon capacity drop. Before
high flows can be restored, the occupancy has to fall below 30 %, where the flow rate
takes relatively low values at first. Hence, maximum flow can only be reached from the
free flow branch and not from the congested one.

What happens when traffic switches from free flow to a congested state? According
to equation (2.3), a decrease of the flow with a simultaneous increase of the occupancy
must be associated with a drastic drop of the velocity. Figure 2.4, which shows the
evolution of the average velocities (v)1 min for the time-traced flows of figure 2.3, confirms
this conclusion.

80 1 I I T T 1 1 T
= 70 - -+ v\ - - -
= 60 - -+ + - T K s
G
50 -+ % + A — X \ T 7
Zaof \f T + 4 N\ -
N
s W) ~ T T =\

20 - -+ T -+ T .

10 L1 \ L \ ! L1 [ O R L1 \

20 25 30 35 20 25 30 35 25 30 35 40 45 50 25 35 45 55 152025303540
Op [%] Op [%] Op [%] Op [%] Op [%]
(a) (b) (c) (d) (e)

Figure 2.4 Time-traced velocities corresponding to the flows of figure 2.3. (Note the
different ranges of the abscissae. Again, the position Op = 30 % is indicated by a
thin, dotted line.)

As one can see, the average velocity may drop for more than 50 km/h (see figure 2.4d)
from one minute to the next. Due to the abrupt change of flow and velocity, this transition
is often called a “traffic breakdown”. From a driver’s perspective this breakdown simply
means that he or she gets stuck in congested traffic. The average flow in these cases
still measures 1000 vehicles/h/lane. Consequently, dozens or even hundreds of vehicles
must be involved. A traffic breakdown, therefore, is not only a collective phenomenon
of great practical importance, but it is also interesting from a physical point of view.

The following section will give a brief overview of empirical and theoretical results
with respect to traffic breakdown. Its reproducibility with microscopic traffic models
will be the subject of the next chapter.

2.3 Traffic Breakdown

We have seen that a traffic breakdown describes a sharp drop of the average velocity on
a stretch of road (for another example, see figure 2.5). The obvious question of what
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causes a breakdown was unanswered for a long time and has been intensively studied.

detector data

= 150 D2 D3 D4 D5 D6 L 150
£
. 100 100
R
g
< 50 =50
=

077700 900 700 900 700 900 700 900 700 900 °

time

Figure 2.5 Time series of several subsequent detector cross-sections showing a break-
down. The black curve shows the velocity time series for the left lane, and the blue
curve shows the corresponding time series for the right lane. The time series are
ordered by the location of the corresponding detector from upstream to downstream
(left to right). (For the detectors’ positions, see figure 3.3.)

The study of single vehicle trajectories reconstructed from aerial photographs [144]
suggested that a breakdown occurs spontaneously (i.e., without an accident or con-
struction site). In addition to that, the trajectories showed that the breakdown creates
a traffic jam which propagates—ijust like a wave—against the driving direction at a
constant velocity.

The Nagel-Schreckenberg model [102], one of the earliest and probably most simplistic
microscopic traffic models that could reproduce these empirical findings, incorporated
a stochastic component to reflect the drivers’ incapability to maintain a constant
velocity. In [102], it is concluded that, after a critical vehicle density is reached, small
perturbations (e.g., a single driver hitting the brakes too hard) suffice to cause a traffic
breakdown, forcing all vehicles to slow down.

Empirical evidence for this assumption was given by an intriguingly simple ex-
periment [105, 132]: drivers were asked to maintain a constant velocity and constant
space gap while driving on a circular road. After several minutes, the formation of
jammed vehicle clusters traveling against the driving direction could be observed—
exactly as predicted by traffic models incorporating a probabilistic component such as
the Nagel-Schreckenberg model.

Although this experiment proves that traffic jams can, in principle, emerge anywhere
on an uncongested road, in reality, traffic breakdowns usually occur in the vicinity of
bottlenecks (e.g., ramps, lane closures, or uphill gradients). Consequently, breakdown
phenomena at bottlenecks have been intensively studied (e.g., see [22, 51, 57, 68, 125]).
Even though the interpretation of the data has sometimes led to partly contradicting
conclusions ([68] versus [22] versus [57] and [51, 57] versus [125]), one can identify three
ingredients, as Helbing et al. [42] call it, which are necessary for a breakdown to occur:

1. a high traffic volume,

2. a bottleneck (i.e., a spatial inhomogeneity), and
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3. a temporary perturbation (e.g., a lane change or natural fluctuations in driving
behavior, as discussed earlier).

When these requirements coincide, a breakdown is likely! to occur, and freely flowing
traffic switches to a congested state with very different characteristics. Such behavior
resembles phase transitions in physical systems and raises the question of whether a
traffic breakdown represents a phase transition in traffic flow.

2.4 Phase Transitions and Traffic Phases

Using the terminology of phase transitions with respect to traffic flow is problematic
because traffic definitely is a system far from equilibrium (e.g., non-vanishing net
currents). Therefore, the well-known concepts of equilibrium statistical physics cannot
be applied.?

Yet there are one-dimensional driven particle systems, which show transitions that
are similar to a traffic breakdown. The prime example of such systems is the totally
asymmetric simple exclusion process (TASEP) as sketched in figure 2.6.

Figure 2.6 Visualization of the totally asymmetric exclusion process (TASEP) with
open boundaries, which is a good example of a non-equilibrium (transport) process.
Particles enter the system from the left boundary with probability «. In the bulk,
particles move with probability p to the right if the next site is empty. Particles in
the right-most site (labeled N) leave the system with probability 5. (The variables
a, B, and p being probabilities implies that the system evolves in discrete time. In
continuous time, the variables denote transition rates rather than probabilities.)

The system consists of IV sites that can be occupied by one particle at most. Particles
enter the system from the left boundary with probability «, they move to an unoccupied
neighboring site to their right with probability p, and they leave the system via the right
boundary with probability 8. The bulk dynamics of the TASEP and of related systems
is governed by the probabilities with which particles enter or leave the system [23, 37,
85, 114], and the resulting phase diagram reveals distinct phases: a low density phase
(LD), a high density phase (HD), and a maximum current phase (MC). These phases
are separated by first- (LD+MC and HD++MC) and second-order (LD++HD) phase

1The breakdown is a probabilistic phenomenon whose probability increases with the traffic volume [15,
54, 111, 112].
2For a short introduction to non-equilibrium physics, see the article by Mallick [95].
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transitions, respectively. Therefore, the observed phase transitions are called boundary-
induced [87]. Depending on the inflow and outflow probabilities of the system, a local
perturbation may move either along the flow of particles or in the opposite direction.
Compared with vehicular traffic [2], the latter case may be interpreted as a traffic jam
propagating upstream. Similarly, the shock, which marks a discontinuity in the density
profile, can be seen as the jam’s upstream front. In fact, some of the models that are
used to describe traffic flow are very similar to the TASEP and related particle hopping
models. Hence, we can indeed identify a traffic breakdown as a boundary-induced phase
transition [113].

At this point, we have to note that the term “traffic phase” or just “phase” is used
in a less strict manner in the traffic-related literature. There, a (traffic) phase denotes a
spatiotemporal traffic pattern with very characteristic features [56, Appendix A]. In
this sense, one has to understand the term “phase” in the expression “three-phase traffic
theory” which denotes the currently most popular and probably best-established traffic
theory.

2.5 Three-Phase Traffic Theory

The meticulous analysis of empirical traffic data by Kerner and colleagues has led to the
development of the three-phase theory of traffic (exhaustively presented in the books
by Kerner [54, 56]). Kerner found that the obvious classification of traffic in free flow
and congested flow is too coarse-grained because his studies showed a rich variety of
spatiotemporal patterns of congested traffic. According to the three-phase traffic theory,
congested traffic subdivides into two phases: “synchronized traffic” and “wide moving
jams”. Therefore, this theory is based on and culminates in the identification of distinct
spatiotemporal patterns of congested traffic with very characteristic properties. The

following points summarize the most important properties of the three traffic phases [54,

56]:

Free flow (F) is the prevalent traffic phase at low vehicle densities. When the vehicle
density is low, vehicle interactions are scarce and weak. Therefore, vehicles can
travel at their desired speed without hindering each other. This results in the
high average velocities of free flow.

As long as the vehicle interactions are weak, traffic flow increases linearly with
traffic density. At higher densities and with stronger interactions, vehicles have to
adapt their velocity, which leads to the curvature at the upper end of the line F
in figure 2.2.

Wide moving jams (J) represent regions of high traffic density and (very) low vehicle
speeds. These regions are clearly delimited in space from any neighboring traffic
phase by two sharp fronts. At these fronts, density and vehicle speeds change
considerably.

The term “moving” means that the jammed region propagates upstream on the road
through other traffic phases and even through bottlenecks. While propagating, the
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downstream front moves at a constant velocity of approximately —15km/h [120,
139]. (Slightly higher speeds, ranging from —17km/h to —24 km/h, were observed
by Koshi et al. [86] and Iwasaki [45].)

Synchronized flow (S), from which wide moving jams emerge spontaneously [53], are
characterized by intermediate vehicle speeds. Compared with free flow, average
velocities are lower in synchronized flow, and yet the flow rate may be nearly as
high as in free flow [52, 60].

Unlike wide moving jams, synchronized flow cannot propagate through bottlenecks.
Often, it is even fixed at one [52].

This traffic phase is described as “synchronized” because the average velocities on
different lanes of a multi-lane road tend to approach each other, i.e., to synchronize.

The analysis of empirical observations has led to several conclusions in the framework of
the three-phase traffic theory, which we want to summarize here and to which we will
refer in chapter 4. The fundamental hypothesis of the three-phase traffic theory states
that the “steady states of the synchronized phase cover a two-dimensional region in
the flow—density plane” [54, p. 46]. This could explain the wide scattering of congested
states, which can been seen in figure 2.1a. From this follows, however, that a functional
relationship between vehicle flow and vehicle density such as equation (2.3) does not
exist.

With respect to the transitions between traffic phases, the three-phase traffic theory
states that wide moving jams do not emerge from free flow [52]. Wide moving jams
spontaneously form from synchronized flow, which is called an S—J! transition. Similarly,
synchronized flow emerges spontaneously from free flow (F—S transition) as a result of
a local disturbance. Therefore, a traffic breakdown is always associated with an F—S
transition.

2.5.1 Three-Phase Traffic Theory and Earlier Modeling Approaches

Furthermore, the development of the three-phase traffic theory followed from Kerner’s
assessment that earlier traffic models cannot explain nor adequately describe the
breakdown phenomenon and several related spatiotemporal features of traffic flow [54,
ch. 10]. He claims that the correct description of these phenomena was a unique feature
of his theory, and he speaks of a large number of earlier models as models within
the fundamental diagram approach. The term fundamental diagram approach is to
make clear that the steady states of models within this approach lie on a curve in the
flow—density plane (or as in figure 2.2: on two curves), as opposed to the two-dimensional
plane of steady states postulated by the three-phase traffic theory.

The main criticism Kerner raises against the fundamental diagram approach is that
the fundamental diagram combines temporally (and spatially) averaged data [54, ch. 10].
Hence, it does not contain information about the spatial and temporal evolution of

Note that both traffic flow and the wide moving jam phase are abbreviated by the letter ‘J’. The
flow is set in italics, whereas the traffic phase is set roman.



14 2. Traffic Flow Fundamentals

traffic flow. Moreover, according to Kerner, models within this approach foresee only
one desired space gap for vehicles following another one driving with a fixed velocity.
Therefore, Kerner concludes that models based on a fundamental diagram cannot
correctly reproduce important features of traffic flow, in particular, synchronized flow.

In the following, we will use the terms “model with a fundamental diagram” and
“model within the fundamental diagram approach” synonymously to stress that such a
model is not supposed to reproduce synchronized flow.

Yet it should be mentioned that studies by Schénhof and Helbing [124, 125] and
by Treiber et al. [142] showed that traffic models with a fundamental diagram can also
produce a rich variety of spatiotemporal traffic patterns, of which they attributed some
to the synchronized flow phase. In addition, such models also offer an explanation for
the wide scattering of congested traffic states in the empirical fundamental diagram
(cf. figure 2.1): Treiber et al. [143] suggested that drivers choose their time headway
(i.e., the temporal headway to the leading car) depending on the current traffic state.
This variance-driven time gap produces widely scattered data points in the flow—density
plane, too, as they could show for several models within the fundamental diagram
approach.



Modeling Approaches and Breakdown
Reproducibility

During the past 50 years, numerous models to describe vehicular traffic have been
proposed (e.g., see the review articles [20, 41, 100, 103] and the recent book by Schad-
schneider et al. [123]). Based on the approach to the complex many-body system traffic,
these models can be further classified as macroscopic or microscopic. Macroscopic
models treat traffic flow by analogy to the flow of a compressible fluid and, hence, are
restricted to study the collective dynamics instead of the individual vehicles’ motion.
Microscopic models, on the other hand, explicitly model vehicle-vehicle interactions and
keep track of every single vehicle. Depending on the area of application, either approach
may be favored—possible criteria for the evaluation are the desired level of detail, the
computational tractability, or the ability to reproduce particular empirical features of
traffic flow.

The pursuit of finding better and better models has led to a multitude of macroscopic
and microscopic traffic models. In the field of microscopic models alone, one currently
counts more than one hundred such models [16], and their number is still increasing.
These models, however, may be subdivided again. Traffic cellular automata [94], in which
both space and time are discrete variables, represent a prominent subclass of microscopic
traffic models. Together with their rule-based dynamics, they are closely related to
the particle hopping models known from non-equilibrium physics (see section 2.4). In
contrast, car-following models are continuous in space and time. In this subclass, a
vehicle’s motion is governed by a differential equation—usually involving the position,
the velocity, and the acceleration of the preceding vehicle (for a comprehensive overview
of the various modeling approaches, see [12, 123]).

The question of what characterizes a “good” model is not clear though as several
levels of detail can be considered: inter-vehicle dynamics (how a vehicle interacts with its
immediate predecessor), traffic dynamics (whether the model exhibits the known traffic
patterns), or traffic statistics (whether the model is able to reproduce empirical lane

This chapter is largely based on and taken from the author’s article [T77] (see page 114).
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usage and headway distributions). This distinction is necessary as a model performing
well in one of these fields is not guaranteed to behave equally well in the others.

Despite the large number of models, there are relatively few studies which actually
compare these models with empirical traffic data. Especially in the field of traffic
dynamics, which will be the focus of this chapter, there is a lack of comparative studies.

The only comparisons between empirically observed and simulated traffic dynamics
that we are aware of were carried out by Treiber et al. [139], Popkov et al. [113], and
Kerner et al. [59]. The first two articles, however, focused on single-lane dynamics and
did not provide quantitative results. Yet lane changes have an important influence on
traffic dynamics, as Kerner and Klenov [61] found by analyzing vehicle trajectories:
lane changes between neighboring lanes can be responsible for the emergence (and
dissolution) of congested traffic states. The article by Kerner et al. [59] offers a very
detailed discussion of traffic dynamics and a qualitative comparison of empirical data
with two models based on Kerner’s three-phase traffic theory. The authors, however,
do not provide a quantitative analysis nor do they discuss the influence of the various
model parameters on their results.

It is a very interesting and important question whether traffic models are able to
predict the transition from one traffic phase to another. Investigating this question is
challenging as such a (phase) transition occurs spontaneously and is not restricted to a
certain location on the road. Moreover, it is not clear how to assess the performance of
a model compared with empirical traffic data.

Our analysis of traffic dynamics and the comparison with simulation results is based
on detector data. As detector data represent locally aggregated information, they allow
no explicit statement on the spatial extent and propagation of traffic states. For this
reason, the data of a single detector do not suffice to study the spatiotemporal dynamics.
Analyzing the time series of a sequence of neighboring detectors removes this restriction.
Therefore, we have chosen a highway section with a sufficient number of detectors
for our study. To examine the spatiotemporal traffic dynamics, we have selected two
microscopic traffic models that gave good results in previous studies [16, 81]. As a
reference, we have also included the Nagel-Schreckenberg model (NSM) [102], which is
a rather simplistic traffic cellular automaton (CA) [94].

In this chapter, we will discuss the ability of the three selected traffic models to
reproduce the spatiotemporal dynamics of traffic flow. To assess the quality of the
results, we will present methods that allow both a qualitative and a quantitative analysis.
In this context, we will also discuss some modeling aspects (e.g., boundary setup and
vehicle length) and their influence on the observed traffic pattern. For this purpose,
we modeled a section of a German Autobahn and used empirical detector data that
show a traffic breakdown in the morning peak hour. As we explicitly wanted to consider
multi-lane dynamics in heterogeneous traffic, we chose models with asymmetric lane
changing rules to mimic the lane changing behavior that is found not only on a German
Autobahn but also in most other European countries.
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3.1 Microscopic Traffic Models

We start with a review of the three microscopic models that we selected for the
comparison: the intelligent driver model (IDM) [139, 141], the well-known Nagel-
Schreckenberg model (NSM) [102], and the comfortable driving model (CDM) [79, 83],
which is also known as brake-light model (BLM).

Although all three models are microscopic ones, they pursue different modeling
approaches. The single vehicle dynamics already reveals some of the differences between
them. For each model, figure 3.1 shows the velocity profile of a vehicle starting at rest
and approaching a parked vehicle 3 km ahead.
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Figure 3.1 Velocity profiles for a vehicle starting from rest with a standing vehicle
3km ahead for the NSM, CDM, and IDM. The enlarged figure detail on the left
shows the influence of the probabilistic acceleration behavior of the CDM and the
NSM. As the vehicles accelerate only with a given probability, it takes 2s until the
vehicle in the CDM starts moving. The same effect causes the slight pause in the
NSM’s acceleration process after 1s and the velocity fluctuations after the vehicle
has reached its maximum velocity.

The temporal discretization of the cellular automata models manifests itself in
discontinuities of the corresponding velocity profile. The delayed acceleration in the
CDM is due to a so-called slow-to-start rule. According to this rule, a vehicle accelerates
only with a relatively low probability, when starting from rest. When approaching
the parked vehicle, the IDM’s vehicle initiates a smooth braking process with realistic
deceleration values. In both CA models, the vehicle comes to rest within one or two
time steps (corresponding to 1s or 2s) after driving at maximum speed—thus, resulting
in unrealistically high deceleration rates. It has to be noted, however, that the resulting
high deceleration rates can be observed in all models on roads with multiple lanes and
on-ramps. For the CDM, we will investigate the frequency of such unrealistic braking
maneuvers more closely in section 4.5, where we will find that they are rather rare.

For the subsequent review of the models, we will refer to the notation of figure 3.2,
where vehicles are labeled in ascending order from upstream to downstream. The length
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of a vehicle, its current position, and its current velocity are denoted by [, x, and v,
respectively.
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Figure 3.2 Graphical presentation of the variables that are common to all traffic models
considered here: the vehicle length [, its velocity v, and its position x. The so-called
distance (headway) d,, is an abbreviation for the expression d,, = Tp+1 — lpt1 — Tn.

3.1.1 Intelligent Driver Model

In contrast to the NSM and CDM, the IDM is a car-following model in continuous
space and time!. As explained earlier, the motion of vehicles in a car-following model is
governed by a differential equation. In the case of the IDM, the rate of change of the nth
vehicle’s velocity depends on its current velocity v, compared with the vehicle’s desired
or maximum velocity v, and on its distance to the preceding vehicle d,, compared

with its desired distance d}, [139]:

() (S2)) e

The desired distance d), is calculated from the current velocity, the velocity difference
to the preceding vehicle Av,, = v,,41 — vy, and the desired acceleration and deceleration
rates, a and b, respectively [141, ch. 11]:

(3.2)

RYAN
d’ (vn, Avy,) = dy + max (0, v, T — Y Un) .

2+vab

As one can see, d;, is bounded from below by a minimum headway dy. Together with dy,
the safety time gap T' determines the distance between vehicles in homogeneous traffic
flow. The acceleration exponent ¢ in equation (3.1) controls the acceleration rate of
a vehicle approaching its maximum velocity v®*. (The smaller it is, the sooner the
vehicle chooses an acceleration rate below the maximum value of a.)

Altogether, equation (3.1) leads to a very smooth driving behavior with almost
always realistic values of the deceleration. Typical values for the parameters’ values are
given in table 3.1.

A general model for lane changes in the IDM, called MOBIL (minimizing overall
braking induced by lane change), is presented in [71, 140]. This model offers rules for
both symmetric and asymmetric lane changes.

! Although the model is continuous in time, the numerical evaluation of the underlying differential
equation requires a discretization of time.



3.1. Microscopic Traffic Models 19

Table 3.1 Typical values of the IDM’s parameters taken from [71]. The maximum
velocities were rounded to integer values though. The last row also contains a
value for the temporal discretization that we used for the numerical evaluation of
equation 3.1. (The numerical solution is an approximation to the exact solution,
which requires At — 0.) In contrast to CA models, the value of At can be adapted
without, at the same time, changing the values of other parameters (e.g., velocity).

parameter value unit
do minimum distance 2.0 m

a acceleration 1.5 m /s>
b desired deceleration 2.0 m/s?
T safety time gap 1.2 S
vlax max. velocity car 340 £20% m/s
ved%  max. velocity truck 23.0 £20% m/s
lear car length 4.0 m
liruck  truck length 12.0 m

) acceleration exponent 4

At temporal discretization 0.25 S

3.1.2 Nagel-Schreckenberg Model

As in all cellular automaton models, space and time in the NSM are discrete. One can
think of the spatial discretization as space being divided in cells of length Ax, where
each cell can either be occupied by a vehicle or empty. Consequently, each vehicle’s
position is a multiple of the spatial discretization Az. Vehicle motion in the NSM
is the result of the simultaneous application of a set of rules to each vehicle. Each
application corresponds to an advance in time of At. The NSM’s set of rules comprises
three steps [102]:

1. Speed adaptation: A vehicle n adapts its speed. This means that it brakes if a
collision with the leading car is imminent (i.e., if v, (t) > d,(t)), and it accelerates
as long as it has not reached its maximum speed v'®* (i.e., if V" > v, (t)),
otherwise:

Un(t + 1) < min (v, (¢) + 1,0, dy (1)) . (3.3)

2. Dawdling: The introduction of a probabilistic component 0 < p < 1 produces
random speed fluctuations. This step is to reflect the drivers’ inability to maintain
a constant velocity (see section 2.3 and [105, 132]):

Un(t + 1) < max (v, (t + 1) — 1,0)  with probability p. (3.4)

3. Vehicle motion: Finally, the vehicle moves with the velocity that was determined
in the previous steps:

Tn(t+1) « zp(t) +op(t+1). (3.5)
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Table 3.2 summarizes typical values of the parameters used by the NSM. A compar-
ison with table 3.1 shows that vehicles in the NSM are considerably longer than in the
IDM. The reason is that the NSM’s values already include the minimum headway that
a vehicle takes in dense traffic. Hence, the term vehicle length is somewhat misleading
as it rather denotes the minimum space required by a vehicle, and a proper comparison
with the IDM should take into account the IDM’s minimum distance dgy as well.

Table 3.2 Typical values of the NSM’s parameters taken from [102, 122]. We did,
however, double the length of slow vehicles to better mimic the physical properties
of trucks. Moreover, the vehicles’ length denotes the minimum space required by a
vehicle. Therefore, it is larger than the distance between a vehicle’s front and rear

end.
parameter value  unit
P dawdling probability 0.4
Ax spatial discretization 75 m
At temporal discretization 1.0 s
v max. velocity car 375 m/s
viax - max. velocity truck 225 m/s
lcar car length 7.5 m
liruckk  truck length 150 m

In the following, we will use the asymmetric lane changing rules for the NSM that
are described in [80, 122]. (Several other asymmetric rule sets have been proposed. For
an overview, see the review article [20].)

3.1.3 Comfortable Driving Model

The CDM, originally called brake-light model, is an advancement of the Nagel-Schrecken-
berg cellular automaton with extensions for anticipatory driving. Thereby, the CDM
enables a vehicle to react more carefully to the preceding one. (In the NSM any preceding
vehicle is ignored, unless a collision is imminent.) The model includes anticipatory
effects by considering the status of the preceding vehicle’s brake light b,.1, which
may be on (i.e., bp41(t) = 1) or off (i.e., byy1(t) = 0), by anticipating its velocity
Vanti (t) = min(vpy1(t), dny1(t)), and by calculating the effective distance d<f(¢) as

AT (t) = dy (t) + max (vansi (t) — dsate, 0) (3.6)

where the parameter dg,s governs the effectiveness of the anticipation.
Similar to the NSM, vehicle motion results from the simultaneous application of
several rules that are explained in the following:

1. Acceleration: In the first step, a vehicle tries to accelerate to its maximum
velocity. To avoid unnecessary acceleration, it checks the status of its own and the
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preceding vehicle’s brake light and compares its time headway ty,(¢) = d,,(t) /v, (t)
to a velocity-dependent interaction horizon t4(t) = min (v, (t), h).

min (v, v (t) + 1), if by (t) = bpt1(t) = 0 or t,(t) > ts(t),

n(t+1)
on ) { vn(t), otherwise. (3.7)

2. Braking: Here, the vehicle checks whether it actually has to brake and updates
the status of its brake light. The function ©(-) denotes the Heaviside step function.
un(t+1) < min (d5f(2), va(t + 1)) (3.8)

bp(t+1) <1 =0 (v,(t+1) —vy(t)) (3.9)

3. Determination of randomization parameter' p:
Py,  if bpt1(t) =1 and t,(t) < ts(t),
p<+ R po, ifwv, =0, (3.10)
Pd, otherwise.

4. Dawdling: In the CDM, this step influences both the vehicle’s velocity and the
state of its brake light. Let £ be a (pseudo-)random number, uniformly distributed

in [0,1]:
n(t+1)—1,0), ifé&<p,

on(t+ 1) « X Ealt+1) = 1,0), & <p (3.11)
v (t+ 1), otherwise.
1 if dp=

Dot +1) « ifs<pandp=p, (3.12)
bn(t+1), otherwise.

5. Vehicle motion:
Tp(t+1) « zp(t) +vp(t+ 1) (3.13)

From the definition of the anticipated velocity vanti(t) follows that in the CDM a vehicle’s
motion does not only dependent on the velocity of and the distance to the leading vehicle
but also on the distance of the latter to its own predecessor. This allows vehicles to
accept time headways of below 1s when driving at high velocities (also see section 4.1).

Typical values for the parameters described above are given in table 3.3.

The CDM’s model description [79, 83] also provides a set of asymmetric lane changing
rules.

In an earlier study [81], which analyzed the distribution of time headways in various
traffic cellular automata, the CDM showed a better agreement with empirical data than
simpler models such as the NSM. A short review and possible criticism of this study
are given in section 4.1.

'For the meaning of the three dawdling probabilities po, ps, and py, see the explanation to equa-
tion (5.6) in section 5.3.2.
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Table 3.3 Typical values of the CDM’s parameters taken from [83]. Similar to the
NSM, we doubled the length of slow vehicles. We also increased the maximum
velocity of both cars and trucks by 3m/s to obtain more realistic values with respect
to a German Autobahn, but the absolute difference in maximum velocities was

preserved.
parameter value  unit
dsate  effectiveness of anticipation 7
h brake lights’ range of influence 6
Db dawdling probability (over-deceleration) 0.94
Do dawdling probability (slow-to-start) 0.5
Dd dawdling probability (standard) 0.1
Ax spatial discretization 1.5 m
At temporal discretization 1.0 s
vhax  max. velocity car 33.0 m/s
v max. velocity truck 25,5 m/s
lear car length 75 m
liruck  truck length 15,0 m

3.2 Empirical Data and Model Testing

To investigate the spatiotemporal traffic dynamics of the selected models, we used data
from ten detector cross-sections on the German Autobahn A44 between the cities of
Unna and Werl. A schematic sketch of the 13 km-long, two-lane highway segment is
depicted in figure 3.3.

DI D2 D3 D4 DS D6 D7 D8 DY DIO
__II{II __________ I{IIIF _______ I{IIIII _____ I{II ______ w1 | i
] I 1 1 ] I I i1
10.377 2131 3.663 5.018[k : 6.809 7.875 9.019 9.934 11.334 11.916
m

Figure 3.3 Schematic sketch of the highway section considered. The detectors are
labeled as D1,..., D10.

This section is well suited for our analysis as it contains a large number of detectors
and a single off-ramp and single on-ramp at its downstream end, which serve as
bottlenecks. Both ramps can potentially trigger a traffic breakdown. The upstream
cross-sections allow measurements of the traffic patterns generated at the bottlenecks
without perturbations by additional bottlenecks.

The detectors on this section distinguish two vehicle classes, namely “trucks” and
“cars”. Yet there is no strict rule that this classification is based on [18]. For each vehicle
class, the detectors measure the number and the average velocity of all vehicles that
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pass the corresponding cross-section per 1 min-interval.

For a realistic modeling of open boundary conditions, which includes the inflow and
outflow via the two ramps, we used the detector data of November 4, 2010. These data
show a spontaneous traffic breakdown in the morning peak hour traffic. The time series
of detector D5, as depicted in figure 3.4, is exemplary for all detectors upstream the
on-ramp: after the breakdown occurred at approximately 7:15 a.m., upstream vehicles
approaching the on-ramp had to slow down causing a congested traffic pattern that
travels upstream. The inflow from the downstream boundary was approximately 36 000
vehicles during the entire day with additional 7000 vehicles joining the road via the
on-off-ramp system. Vehicles leaving the system as required by the boundary conditions
were selected on the basis of their vehicle type according to the empirical data. Similarly,
the measured data determined the type of entering vehicles. Vehicles entering the road
via the on-ramp increase the probability of a breakdown as they are likely to provoke
perturbations that are the cause of a breakdown.

right lane
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Figure 3.4 The velocity time series of detector D5 separated by lane and vehicle type.
The time series of cars is depicted with a solid black line. The corresponding time
series of trucks is depicted with a solid blue line. These time series are exemplary for
all detectors upstream of the bottleneck. The breakdown occurs at approximately
7:15 a.m., it affects both lanes, and the subsequent congested traffic pattern lasts
approximately 90 min. Microscopic traffic models should be able to reproduce
this breakdown and the subsequent traffic pattern. (Missing data points, usually
resulting from the lack of trucks in dilute traffic in the left lane, were approximated
by a linear interpolation for better readability.)

By aggregating the same information as the real detectors, the simulations yield an
equivalent set of data. To compare the resulting data, we propose two very intuitive
approaches. Let V, /s = {Ue Js(t1), Vess(t2); -, Ve /S(tn)} denote the empirical (subscript e)
and the simulated (subscript s) time series of a detector. By regarding the two sequences
of length n as n-dimensional vectors, Brockfeld et al. [17] suggested using the 1-norm L,

Ly = Z |ve(t;) — vs(t;)] (3.14)
=1

as a direct error measure. For the similarity analysis of two time series, however, the
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shape of the series is, in general, more important than their absolute values. Otherwise,
a poorly chosen upper boundary for vehicle speeds (see tables 3.1, 3.2, and 3.2) would
result in a large error margin even if the traffic dynamics (i.e., the sequence and duration
of traffic phases) is correctly reproduced. Hence, the different values of the maximum
velocities in free flow and random fluctuations should be filtered, so that they do not
enter the comparison. Therefore, and according to [33], we suggest a normalization of
the series before calculating the 1-norm of equation (3.14). The normalization of a time
series X = {x1, 9, ..., 2, } with mean p(X) and standard deviation o(X) is obtained by
the affine transformation

(3.15)

One should mention that the 1-norm is just one way of determining the distance between
two time series. In general, any symmetric and positive-definite metric for which the
triangle inequality holds could be applied [33].

Anyway, the just described method compares the absolute values of two time
series and, therefore, requires a proper normalization of the time series’ values. If one
only wants to know whether the two time series show a similar temporal evolution,
a normalization is not necessary. A classical approach to analyze time series is the
decomposition of the series into three components [93]: a trend component, a seasonal
component, and a noise component. Thus, if both series are similar, this means that the
trend and seasonal components of the two series are similar. Consequently, to assess the
similarity between the empirical time series and the one obtained from our simulations,
we can study the time series’ residuals R(¢;):

R(tl) = ’Ue(ti) — Us(ti). (3.16)

The residuals denote the difference between the observed and the simulated value at each
time step. If the model’s time series reproduces the empirical data, the calculation of
the residuals cancels the trend and seasonal components and leaves only the noise term.
Under the assumption of white noise, the residuals are expected to behave randomly and
to be uncorrelated. Similarly, it is also possible to determine the correlation between
the two series. In this case, the degree to which the simulated time series reproduces
the empirical data can be determined by the cross-correlation of the two series.

3.3 Simulation Setup

3.3.1 Modeling Open Boundaries and Ramps

The modeling of boundaries and ramps still offers several degrees of freedom and can
significantly influence the resulting traffic patterns. Apart from the already mentioned
boundary-induced phase transitions (section 2.4), the boundary setup can affect and
limit the spectrum of observable traffic states [8].

Therefore, and for better reproducibility of our results, we want to give a concise
description of the boundary and on-ramp setup. To insert new vehicles, we define an
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entrance section of length | = Zqown — Zup, Where Zaown (Zup) stands for the downstream
(upstream) end of the entrance section (see figure 3.5).

upstream speed speed
boundary off-ramp on-ramp  adaptation limit
—— — —— —
DI | D7 D9 D10
Z Z 7/ |
. @}
off Iis on on adapt adapt
Zup  Tdown Lup xa()wn up Ldown Lup dowI;

Figure 3.5 Graphical representation of the boundary setup. Gray rectangles mark the
segments where vehicles are inserted or removed. The checked rectangles mark the
regions where vehicles decelerate (if necessary) so that they pass detector D10 with
the velocity required by the speed limit. (For the sake of completeness, we give the
following numerical values: ., = 0.377km, Zqown = 0.4895km, z°f = 8.793 km,

up
:ngwn = 9.018km, 293 = 11.108km, z32,, = 11.334km, 223" = 11.466 km, and
adapt
0P = 11.916 km.)

A vehicle entering the system is placed in the largest gap of the entrance section if
the insertion is safe. The insertion is safe if neither the inserted vehicle’s deceleration
nor the following vehicle’s deceleration falls below a threshold by, = —1m/s2. (In the
IDM, one has to check the other lane as well due to the so-called longitudinal-transverse
coupling [71].) After the insertion, the new vehicle adapts its velocity to the one which
is obtained by averaging the leading and the following vehicle’s current velocity. This
strategy can be applied both to the on-ramp and to the upstream boundary.

Similarly, vehicles leaving the road via the off-ramp are selected from an exit section.
The insert and exit sections representing the on-ramp and the off-ramp are restricted to
the rightmost lane, whereas the upstream boundary’s entrance section spans both lanes.

To mimic the traffic state at the downstream boundary, we decided to apply a
dynamic speed limit from the position of detector D10 to the end of the road. The speed
limit equals the maximum velocity that detector D10 measured during the previous
aggregation interval. (As the CA models require an integer value for the speed limit,
we converted the value by rounding it up.) To allow for a smooth deceleration with
respect to the speed limit, we defined a deceleration section upstream of detector D10.
Vehicles within the deceleration section gradually reduce their velocity such that they
pass detector D10 with the desired velocity.

Vehicles are inserted according to the empirical data of detector D1. Consequently,
the open boundary’s entrance section starts at the position of detector D1. For the
length of the entrance section we used a value of 112.5m, which is half the value we
used for the on-ramp’s (off-ramp’s) entrance (exit) section. As there are no detectors
directly measuring the vehicles entering or leaving the road via the ramps, we determine
these values by comparing the values of detectors D7 and D9 with each other. Detector
D7 is situated immediately downstream of the off-ramp and detector D9 immediately
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upstream of the on-ramp. Thus, if detector D9 measured more vehicles than detector
D7, the surplus is inserted in the on-ramp section. Otherwise, the additional vehicles
are removed from the exit section. In principle, it would also be possible to treat the D7-
and D9-detector data separately. In this approach, however, we might remove a vehicle
from the exit section and insert a new one in the entrance section at the same time. As
each insertion represents a perturbation of traffic flow, which we want to minimize, this
approach is less favorable. Another difficulty is that an insertion or deletion may fail
(e.g., if the safety constraints prohibit an insertion or if there is no vehicle in the exit
section). In such a case, the insertion or deletion of a vehicle is retried in subsequent
time steps until it succeeds so that the total number of vehicles is conserved.

Moreover, trucks were not allowed to overtake in our simulation for two reasons.
First, with asymmetric lane changing rules slower vehicles are required to stay in the
right lane by legislation. Second, the examined road section is equipped with dynamic
traffic signs which may impose an overtaking ban for trucks if traffic demand is high.
Consequently, trucks were inserted only in the right lane at the upstream boundary.
This is supported by the fact that, in the empirical data, the share of trucks in the left
lane, averaged over all detectors, was below 3.6 %. (The highest share of trucks was
observed at detector D6 with 7.4 %.) Figure 3.4 supports this finding: for long periods,
the trucks’ time series has a piecewise linear shape. The fact that the applied linear
interpolation is so clearly visible indicates a low number of trucks.

3.3.2 Calibration

In contrast to previous publications [16, 17, 117], we tried to avoid an automated
model calibration, as such a calibration does not only question the reliability of the
obtained values [16] but can also produce parameter sets whose the degree of realism
can sometimes be doubted (see, e.g., the optimized parameter sets in [117]).

Due to various factors (e.g., weather, road characteristics, or different drivers), one
cannot forgo a calibration completely though. For the necessity of a calibration see
figure 3.6, which shows the actual time series at detector D7 and the velocity time series
of the uncalibrated models at the same position. As one can see, the NSM overestimates
the duration of the congested traffic following the breakdown, whereas the IDM does
not show a breakdown or congested traffic at all.

If the properties of the vehicles (i.e., length and maximum velocity) are to remain
unchanged, the calibration is obvious in the case of the NSM because the model has only
one parameter left to calibrate (see table 3.2). This parameter controls the frequency of
random fluctuations in traffic flow. Hence, we slightly reduced its value from 0.4 to 0.32.

Despite its larger number of parameters, a calibration of the IDM was straightforward
as well: we increased a driver’s desired time headway from 1.2s to 1.5s. Thereby, we
reduced the road’s effective capacity. (This change is still in good agreement with
empirical data [70].) In this case, however, we found that many drivers were no longer
able to enter the main road via the on-ramp due to the previously defined safety criteria.
Therefore, we changed the threshold of the acceptable deceleration of following vehicles
to by, = —50m/s?. (Higher values of by, did not yield satisfying results.)
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Figure 3.6 The empirical time series (left) and the time series produced by the three
models with the original sets of parameters. The time series of the left lane is colored
black and the corresponding time series of the right lane is colored blue.

3.4 Results

A first evaluation of the models’ behavior is best carried out by a graphical inspection
of the resulting time series. Apart from the empirical time series, figure 3.7 shows the
corresponding time series of several detector cross-sections for all models during the
morning peak hour. The empirical time series of detectors upstream of the bottleneck
(i.e., detectors D2 — D7) show a breakdown at 7:15 a.m., and the resulting congested
traffic pattern lasts until 9:00 a.m. During this period, the average velocity on the faster
left lane abruptly drops below the free flow velocity on the slower right lane, and the
velocity synchronizes across lanes. The temporal extent of congested traffic as well as
the severity of the breakdown decrease with growing distance to the bottleneck (D6 —
D2).

All models’ time series show a very good agreement with the empirical data at the
downstream boundary (detector D10). This is, of course, a consequence of the dynamic
speed limit which is imposed on the downstream boundary (see section 3.3.1). Upstream
of the bottleneck region, however, deviations between the models become obvious. The
IDM’s time series does not show a synchronization between the two lanes. Although one
can observe a breakdown in either lane, traveling in the left lane is always faster than
in the right lane. This is a result of the very aggressive attitude (by, = —50m/s?) with
which drivers from the on-ramp enter the right lane of the main road. Greater values
of by, however, led to the suppression of the breakdown. In contrast, both cellular
automaton models reproduce the lane-synchronization following the traffic breakdown
even for by, = 0m/s?. This follows from the models’ weaker safety constraints, which
also result in the very unrealistic deceleration behavior observed in figure 3.1.

Apart from the lack of synchronization across lanes in the IDM, another fundamental
difference is the origin of velocity fluctuations in free traffic flow: the CDM and NSM
incorporate random fluctuations by a stochastic component, whereas the fluctuations in
the IDM result from the heterogeneity of the traffic (i.e., from the uniformly distributed
maximum velocities of vehicles; see table 3.1). For the first two models the strength of
velocity fluctuations is governed by their spatial discretization, which explains why the
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Figure 3.7 A comparison between empirical time series (first column) and the corre-
sponding ones obtained with the IDM, NSM, and CDM (second to fourth column),
respectively. From top to bottom, the rows show the time series for detectors D2,
D3, D4, D5, D6, and D10. The average velocities for the left (right) lane are plotted
with a black (blue) line. Please note that, for the sake of clarity, we limited the
depicted time to the interval from 6 a.m. to 10 a.m. Our analysis, however, is based
on the time series of the entire day.
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fluctuations in the CDM’s time series are less pronounced than for the NSM.

As one can see from figure 3.7, the duration of congestion (i.e., low average velocities)
decreases in the upstream direction in both the empirical data and the data generated
by the traffic models. All models underestimate the breakdown’s spatial extent though.
At detector D2, free flow is restored in all models, whereas the empirical data still show
the influence of the breakdown.

Similar to the graphical inspection, the numerical analysis does not reveal qualitative
differences in the models’ velocity time series. Figures 3.8a—c show the residuals’
autocorrelation for each model at detector D5, which is representative for the other
detectors upstream of the on-ramp.
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Figure 3.8 Autocorrelation of the time series’ residuals at detector D5 for (a) the IDM,
(b) the NSM, and (c) the CDM. Assuming white noise, the 95 %-confidence interval
is plotted as a dashed horizontal line. The cross-correlation between the empirical
time series and the models’ time series is shown in (d). The 1-norm according to
equation (3.14) is given in (e).

Ideally, the residuals are uncorrelated, yielding an autocorrelation coefficient close
to zero. All models show a positive correlation (> 0.5) for the residuals, which decreases
with increasing time-lag. Hence, the assumption of white noise for the residuals has to
be rejected, and a perfect reproduction of the empirical data could not be observed.

Figure 3.8d shows the correlation between the models’ time series and the empirical
data for each detector location. Due to the imposed downstream boundary conditions,
the correlation coefficient’s maximum value (> 0.7) is obtained at detector D10 for all
models. For all models the correlation coefficient remains above 0.5 up to detector D5
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indicating a satisfying reproduction of the empirical data. The decrease in correlation
with increasing distance to the ramps reflects the fact that no model could successfully
reproduce the spatial extent of the breakdown, as already discussed.

Probably the most intuitive comparison is obtained by the calculation of the 1-norm
after transforming the time series according to equation (3.15). Remember that our
primary quality criterion is the reproduction of the breakdown and the subsequent
congested traffic pattern. Hence, we expect the 1-norm to indicate to what extent the
corresponding model achieves this goal. Figure 3.8e shows the 1-norm calculated for
each detector and averaged over both lanes. At detector D2 (i.e., at kilometer 2.131),
the error for all models is about 1300 (measured in arbitrary units) as all models fail
to reproduce the breakdown at this position. Again, due to the boundary conditions,
the best accordance with the empirical measurements is observed at detector D10. The
qualitative behavior between the detectors D1 and D10 is similar for all detectors. Even
the absolute values of the NSM and the IDM are nearly identical; only the CDM’s
values are considerably below the values of the previous models and indicate a better
performance of this model.

3.4.1 Reproducibility of Upstream Boundary Conditions

So far, we have seen that all investigated models are, in principle, able to reproduce
the spatiotemporal traffic dynamics. As the simulations used real detector data, it is
worth discussing to what extent the empirical boundary conditions could actually be
reproduced. In section 3.3.1 we described how vehicles were inserted into the road
segment, and we stated that a failed insertion had to be repeated in subsequent time
steps until it succeeded. Of course, one would expect an insertion to always be successful
as the empirical data prove that real traffic can satisfy the observed demand. In the
simulations, we saw that insertions repeatedly failed, especially during the peak hour
period: table 3.4 gives the maximum number of cars waiting for insertion or removal at
the on-ramp or the off-ramp, respectively.

Table 3.4 Overview of the length of the on- and off-ramp queues (i.e., the number of
vehicles waiting for insertion or removal).

max. queue length [veh] at max. queue duration [min] at

model on-ramp off-ramp on-ramp off-ramp
IDM 139 41 82 22
NSM 63 42 14 9
CDM 55 42 10 41

Moreover, we have recorded the maximum time for either ramp during which the
queue of vehicles waiting for insertion or removal was above zero. For instance, the
maximum number of vehicles waiting for insertion in the NSM was 63 and the time
span of a non-empty queue was 14 min. The results of table 3.4 confirm our previous
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statement that the stricter safety conditions of the IDM make vehicle insertion more
difficult. The maximum queue length for the IDM was twice as large as those for
the two cellular automaton models. For all models, the queue length at the on-ramp
reached values considerably above zero. Whether a vehicle insertion fails depends to a
large extent on each model’s safety conditions. Furthermore, the queue length’s growth
reflects, at least partially, the fact that the models do not perfectly mimic human driving
behavior. In real traffic, for example, it has been found that the time headway of vehicles
traveling at 110km/h can even drop below 0.5s [3]. Such values are impossible for all
models due to their safety constraints. (In real traffic, such headways pose an actual
risk, as drivers cannot react to actions of the preceding vehicle in a timely manner.)

3.4.2 Propagation Velocity of Jammed Traffic

Another characteristic property of traffic flow is the propagation velocity of traffic
jams. A jam is a moving traffic pattern that travels against the direction of traffic flow.
In chapter 2 we have already mentioned that a traffic jam is delimited by two sharp
fronts between which a high vehicle density and low average velocities predominate.
There is also a physical interpretation [2, 37, 113] for the velocities that both fronts
propagate with: the propagation velocity of the upstream front corresponds to the
shock wvelocity. The shock (i.e., the upstream front) marks the transition region, where
vehicles approaching the jam have to slow down and where the vehicle density increases
abruptly. The velocity that the jam (i.e., its center of mass) propagates with is given by
the velocity of the downstream front. For traffic jams, which travel upstream, the sign
of this collective velocity has to be negative. This can be seen from figure 3.7, where
the traffic breakdown occurs the later, the further upstream the corresponding detector
is located.

To measure both the jam propagation (i.e., collective) velocity and the shock velocity,
we have to find the times when these fronts pass a detector. As the upstream and
downstream fronts of a traffic jam are associated with sharp discontinuous changes of
the average velocity, we define the time when the shock reaches the detector as the
moment when the average velocity first drops below a given threshold v,. Similarly,
when the average velocity first exceeds vy, again, we assume that the downstream jam
front has passed the detector. The numerical values of the propagation velocity of both
the shock and the traffic jam can be obtained from the quotient of the distance between
subsequent detectors and the time that passed between the corresponding events being
registered at either detector. In accordance with Rehborn et al. [120], we have set
vy, = 30km/h. As the temporal resolution of 1min is relatively coarse, we averaged
over the values of vy, from 27km/h to 33km/h and obtained the results of table 3.5.

Although the propagation velocities vary strongly between models and between
successive detectors, all models correctly predict a negative propagation velocity (i.e.,
the fronts move upstream against the direction of traffic flow). Due to the relatively
small inter-detector distances and due to an approximate error of 30s in the temporal
detection of jam fronts, the error margins are quite large though. In principle, the
error can be decreased by considering two detectors far away from each other (e.g.,
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Table 3.5 Averaged breakdown propagation velocities. The velocities are given in units
of km/h.

shock velocity for jam propagation velocity for
detectors real data NSM IDM CDM real data NSM IDM CDM
D7—D6 —23 —7 -5 -2 —15 —-17 —24 -9
D6—D5 —12 —32 —14 -7 —11 —28 -3 -7
D5—D4 11 -3 NA -3 —13 -3 NA -3

D7—D2): for the empirical data set we found the propagation velocity to be —13km/h
for D7—D2 and D6—D2, which is in good agreement with the value of (—15+ 2) km/h
found by Rehborn and colleagues [120]. (A similar analysis of the simulation data was
not possible as the jammed traffic pattern did not even reach detector D3.)

3.4.3 Influence of Truck Length and Downstream Boundary Condi-
tion

Finally, we demonstrate the influence of vehicle length and the modeling of the down-
stream boundary on our results. The vehicle length directly influences the spatial extent
of the breakdown. Figure 3.9 shows the velocity time series of simulation runs where we
increased the length of trucks by 7.5m for the NSM, by 1m for the IDM, and by 1.5m
for the CDM.
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Figure 3.9 After increasing the length of trucks, the breakdown can be observed at
detectors further upstream (cf. figure 3.7). (The time series of the left lane is colored
black, and the corresponding time series of the right lane is colored blue.)

A comparison with figure 3.7 proves that this slight change of the vehicle properties
results in a better agreement with the empirical data. For the NSM not only the
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spatial extent of the breakdown but also the duration of the subsequent congested
traffic increases. Due to the NSM’s spatial discretization, the vehicle length can only
be altered by multiples of 7.5 m, which corresponds to a massive change in the road’s
maximum capacity.

Compared to the spatial extent of the breakdown, its origin is a more fundamental
modeling aspect. On the downstream boundary we had imposed a variable speed limit to
mimic the velocities observed in real traffic. Hence, it is worth investigating whether the
breakdown (and the subsequent traffic pattern) resulted from the imposed speed limit
or whether it resulted from the vehicle interactions in the on-ramp region. Therefore,
we repeated the simulations without the speed limit and, thereby, guaranteed free flow
at the downstream boundary. The resulting exemplary time series of detector D5 is
depicted in figure 3.10.
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Figure 3.10 The time series of detector D5. When we impose free flow at the
downstream boundary, the intensity of the breakdown and the duration of congestion
decreases in all models. For the NSM the breakdown even completely disappears.
(The time series of the right (left) lane is colored blue (black).)

The NSM’s time series no longer exhibits a breakdown, whereas the IDM’s and
CDM’s time series still do. Consequently, the source of the breakdown in the NSM
was our choice of the downstream boundary’s setup, whereas the breakdowns in the
CDM and IDM are caused by the on-ramp boundary. However, for the latter two
models the shape of the time series changed, too: the duration of congestion decreased.
Therefore, even if it does not select the traffic state (i.e., congested or freely flowing),
the downstream boundary does determine its duration.

3.5 Discussion

Our analysis shows that all investigated models can reproduce the breakdown and the
associated spatiotemporal traffic dynamics satisfyingly—at least after minor calibrations.
Although the three models are microscopic ones, this result is quite surprising as there
are still substantial differences between the models (e.g., continuous versus discrete in
space, realistic versus unlimited braking capacities, or deterministic versus stochastic
approach). In particular, the NSM did not fall back behind the other two, more recent
models, despite its very simplistic and coarse-grained approach.
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Similarly, all models showed the same shortcomings. Compared with the empirical
data, they underestimated the spatial extent of the breakdown. In real data, the
breakdown could be detected more than 8 km upstream of the on-ramp, which none of
the models could reproduce. We saw, however, that the spatial extent of the breakdown
can be effectively adjusted by the lengths of the different vehicle types.

Adjusting the length of vehicles, whose number is given by the boundary conditions,
has a direct impact on the vehicle density though. Thereby, it also directly influences
the probability with which vehicles can enter the road from the on-ramp. In this context,
we could observe qualitative differences between the models: in peak-hour traffic (i.e., a
high vehicle density), vehicles could more easily enter the main road via the on-ramp
in the NSM and the CDM than in the IDM. The better reproduction of the empirical
inflow rates is a direct consequence of the NSM’s and CDM’s unlimited braking capacity.
The IDM shows a realistic deceleration behavior but makes higher demands on a safe
entry. Therefore, it is more difficult for vehicles to enter in high density phases (e.g.,
peak hour traffic). Hence, the length of vehicles cannot be chosen freely to adjust the
spatial extent of the congested traffic pattern.

In contrast to the CDM and IDM, we found that the breakdown’s occurrence in
the NSM did strongly depend on the modeling of the downstream boundary. Without
applying a speed limit to the downstream boundary, we could no longer observe a
breakdown in the NSM. From a physical point of view, this is a major difference between
the models. The consequences for practical applications, however, are less severe: for
large scale traffic simulations (e.g., [36, 136]), the downstream boundary conditions
are given by the traffic state of the neighboring road segment and cannot be chosen
arbitrarily. Therefore, if the primary concern is the reproduction of the current traffic
state, its physical origin may be of secondary importance.

As a whole, we rate the findings of this chapter as very important because we did
not only show that the traffic models can in principle show a traffic breakdown, but we
also showed that the breakdown occurs at the same inflow and outflow rates at which
the breakdown was observed in real traffic.

In addition, the methods presented to model the open-boundary highway segment
with ramps are formulated in such a general manner that they can be used with or
easily transferred to a large number of microscopic traffic models.

As all models gave good results compared with the empirical data, it is not easy
to make a definite recommendation for one of them. The highest simulation speeds
(measured by the time needed to run the simulation) were observed with the NSM.
Aspects related to secure driving (e.g., to study accident-avoidance systems), which
require a realistic acceleration and deceleration behavior, are best answered with the
IDM. If the focus is rather on a realistic description of the spatiotemporal traffic
dynamics, then the CDM is a good alternative. It is a fast, easily extendable, and still
realistic model.

The CDM showed the least error according to the l-norm (figure 3.8¢) at all
detectors and the strongest correlation with the empirical data from detectors D6 to
D10. Besides that, the model also performed very well in reproducing the empirical
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boundary conditions (table 3.4) and showed a synchronization across lanes, unlike the
IDM. It is important to stress that these results were obtained without calibrating the
model’s parameters. By working with the unchanged parameter set, most of the CDM’s
original results [79, 83] remain unaffected.

Therefore, we decided to further investigate and use the CDM in the following
chapters. By this choice, we expect scientifically sound statements on how alternations
in driving behavior influence traffic flow.



36

3. Modeling Approaches and Breakdown Reproducibility




Traffic Phases and Phase Transitions in the CDM

In the previous chapter 3, we concluded that all investigated models can reproduce the
traffic breakdown satisfyingly. Yet all three models were developed more than a decade
ago, and they are based on the fundamental diagram approach. This means that the
steady states of these models lie on one-dimensional curves in the flow—density plane.

In section 2.5.1 we have explained that such a relation between flow rate and vehicle
density contradicts Kerner’s fundamental hypothesis of the three-phase traffic theory.
According to Kerner, there exists a two-dimensional region of steady states in the
flow—density plane: the “synchronized flow”-phase S.

Therefore, we will provide a more detailed analysis of the CDM’s dynamics in this
chapter. In particular, we will focus on the spatiotemporal traffic patterns resulting from
different inflow and outflow probabilities of an open road segment. Based on time series
of local measurements, the local traffic states are assigned to the different traffic phases of
Kerner’s three-phase traffic theory. For the CDM or any other microscopic traffic model,
this analysis is particularly interesting because different scales have to be considered.
On the one hand, microscopic traffic models are based on the assumption that a vehicle’s
motion is governed by the next (or the next two) vehicles ahead. Hence, from a single
vehicle’s perspective it makes no difference in these models whether there are only two
or two thousand vehicles on the road. In contrast to this microscopic modeling approach,
many empirical studies of traffic focus on macroscopic phenomena. Emerging behavior
in traffic (e.g., traffic breakdown, jam formation) requires the coordinated motion of
hundreds of vehicles (see the recent review article [12], which also discusses current
challenges on traffic modeling). It is far from self-evident that microscopic models
provide good results with respect to macroscopic traffic phenomena. In this context our
investigation and classification of traffic patterns has to be understood. We thoroughly
investigate the macroscopic traffic patterns resulting from the CDM’s microscopic
dynamics, with special attention being paid to the identification of synchronized traffic.

This chapter is largely based on and taken from the author’s article [T78] (see page 114).
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4.1 Earlier Results

First, we will review and discuss some earlier results of the CDM. In 2004, Knospe et
al. [81] proposed an empirical test for traffic cellular automata models. The test was
based on empirical single vehicle data [82, 108, 134] collected by loop detectors. To
assess the quality of the investigated models, they studied how well these models could
reproduce the empirical data.

The selected data comprised the distribution of time headways and the relation
between spatial headway and velocity, which are depicted in figure 4.1. The time headway
tn denotes the time that elapsed after a vehicle passed the detector’s cross-section until
the next vehicle reached the detector.
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Figure 4.1 Examples of the data that the test of Knospe et al. was based on. The
empirically observed time headway distribution is given in (a). The so-called optimal
velocity function, shown in (b), relates the distance d between successive vehicles
and their current velocity v. (Both figures were taken from Knospe et al. [81].)

Knospe et al. compared these data with data from traffic simulations on a one-lane
road, where data was gathered in the same way as local detectors do. After a careful
calibration, which resulted in most of the values of table 3.3, they found a very good
agreement between the empirical data and the one obtained from simulations with the
CDM. An important finding of their test was that the CDM, in contrast to the other
investigated models, could reproduce time headways below 1s, as observed in real traffic
flow (see figure 4.1a).

Despite these important results, we agree with Kerner [54, p. 204] that this test does
not suffice for a full assessment of the model’s quality. As the comparison focused on the
statistical distribution of traffic variables (independent from the detector’s position), its
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informative value regarding the spatiotemporal evolution of traffic variables is limited.

In particular, a classification into traffic phases and the study of spatiotemporal traffic

patterns require taking into account the (temporal) relation of traffic variables.
Knospe et al. were aware of this problem and studied the time series of flow J and

density p. To identify synchronized traffic, they suggested to use the cross-correlation

ce(J, p):

_ (It 1) — ()Tt + 7)) m
VVar (p(t)) x /Var (J(t + 7)) ’ '

where Var(-) denotes the variance (e.g., Var (p(t)) = (p(t)?) — (p(t))?). Since the
synchronized phase covers a two-dimensional region of steady states, they concluded
that the cross-correlation of flow and density should vanish in synchronized traffic (i.e.,
cc(J,p) = 0). This method allowed Knospe et al. to identify phases of synchronized
traffic in the CDM.

In this context, we would like to point out again that working with the traffic
density requires special care. In section 2.1 we have already explained that a direct
measurement of density is not possible by local measurements. Moreover, estimating
the density via the detector’s occupancy is erroneous when the average velocity is low
due to the measurement process by induction loops. (In jammed traffic, when a vehicle
occupies the detector during the entire probe interval, the detector is likely to assume an
occupancy of Op = 0.) This may explain the criticism expressed by Kerner et al. [65],
who claim that states of low velocities at low densities, which were found by Knospe et
al., follow from erroneous density estimations involving a large systematic error.

Therefore, we chose another method to study the spatiotemporal dynamics of
the CDM. Before we explain this method, we will present the general setup of our
simulations.

ce(J, p)

4.2 Simulation Setup — Open Boundaries

As we use a similar setup to Barlovic et al. [8], we give only a brief summary of the
simulation setup. (Minor modifications were necessary because each vehicle occupies
lcar > 1 sites.) We consider a one-lane road of N sites (or cells), on which vehicles
move from left to right. The left boundary or entrance section consists of the leftmost
Voo™ 4+ lear + 1 sites, where vi,a* denotes the vehicles’ maximum velocity. Vehicles, which
enter the road from the left boundary with probability a, are inserted with velocity vgae™
at position Tipgert = MIN(VEY™ + lear + 1, Tlagt — V22X, where a4 is the rear position
of the vehicle closest to the entrance section. Then, all vehicles, including the newly
inserted one, move according to the CDM’s rules of motion (section 3.1.3). If a vehicle is
not able to leave the entrance section, it is removed afterwards. This insertion strategy
allows for higher inflow rates at the left boundary compared with the obvious insertion
strategy, which places a vehicle in the leftmost site with probability « if this site is
empty.

The right boundary or exit section is modeled as follows: before other vehicles move
forward, the rightmost site is occupied with probability 3, and it is cleared after the
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vehicles have moved. Moreover, a vehicle is removed from the road if it will reach the
rightmost site or beyond during the next update step by maintaining its current velocity.

One can interpret the probability « as the inflow of vehicles to the road segment,
and the probability 5 determines the strength of local perturbations caused at the
downstream boundary. These perturbation may, for instance, result from vehicles that
enter the road via an on-ramp and occur randomly in front of vehicles on the main road.
Consequently, high values of 3 result in a low exit probability of the system.

The following results were obtained on a road consisting of N = 5001 sites (=~ 7.5 km).
The first 2 x 10 from a total of 2.5 x 10% time steps were discarded in each simulation
run to exclude transient behavior. The vehicles’ properties were taken from table 3.3,
and we restricted the simulations to use one vehicle type only, namely “cars”.

4.3 Spatiotemporal Dynamics

We have analyzed the vehicle dynamics for all combinations of entrance and exit
boundary conditions resulting from a step size of 0.01 (i.e., o, 5 € [0.01,0.02,...,0.99]).
The physical phase diagram resulting from these measurements is depicted in figure 4.2.
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Figure 4.2 (a) The 3D representation of the phase diagram illustrates very well that the
transition from free flow to congested traffic is discontinuous. For better readability,
we have added straight lines to the equivalent 2D representation in (b), which
represents a stylized phase diagram. (The units of the z-axis were obtained by using
the conversion factors of table 3.3 according to which a site measures 1.5 m and an
update step corresponds to 1s.)

It shows the average velocity of vehicles in the middle segment of the road, which
excludes the first and the last N/3 sites of the road (cf. Namazi et al. [106]). As one can
see, especially from figure 4.2a, free flow (F) and congested traffic (C) are separated by a
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very sharp, discontinuous transition for 8 2 0.1. In figure 4.2b, this transition is marked
by a solid, diagonal line between the regions F and C. By analogy with investigations
of the Nagel-Schreckenberg model [113], we have set apart the rectangular area in the
bottom right corner of figure 4.2b. Although this area is not free of congestion, the
highest flow rates can be observed there. In free flow (F) all vehicles move with their
maximum velocity. For a more detailed study of congested states and the corresponding
traffic phases, it is, however, necessary to investigate the vehicles’ microscopic and
spatiotemporal dynamics.

To illustrate this, figure 4.3 shows four spatiotemporal plots of the entire road during
a one-hour interval (i.e., 3600 consecutive update steps) for four distinct combinations
of inflow and outflow probabilities. All configurations were taken from the region C in
figure 4.2b.
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Figure 4.3 Examples of different spatiotemporal patterns resulting from different inflow
(o) and outflow () probabilities: (a) a = 0.86,5 = 0.09, (b) a = 0.42, 5 = 0.32,
(¢c) «=0.3,=047, and (d) o = 0.38,3 = 0.41. (The entrance section is located
at position = 0 and the exit section at z = 7.5 km.)

The pattern of figure 4.3a is taken from the rectangular area in figure 4.2b. In
this area high inflow rates coincide with a low probability of the exit section being
blocked. The figure shows two phenomena which are characteristic for this combination
of boundary conditions: (i) Due to the high inflow rates, random velocity fluctuations are
likely to occur close to the left (upstream) boundary. These fluctuations cause congested
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traffic propagating backwards and, thereby, reduce the effective inflow probability.
Consequently, the flow of the remaining vehicles corresponds to the outflow of congested
traffic, where no other jams occur (see figure 4.3a during the first 1000 time steps).
(ii) Jams, which often, but not necessarily, occur at the right boundary (at t ~ 1500
in figure 4.3a), have a sharp upstream front. This is again a consequence of the high
inflow rates, because any local perturbation immediately affects the following vehicle
and propagates upstream.

Figure 4.3b depicts several waves of congested traffic traveling upstream at a nearly
constant velocity. These stop-and-go waves are known even from the most simplistic
traffic cellular automata (e.g., the Nagel-Schreckenberg model [102] or the VDR model [7,
8]).

A localized congested pattern is presented in figure 4.3c. Relatively low exit prob-
abilities (i.e., high values of ) constantly provoke jams at the right boundary. The
inflow probability, however, does not suffice to supply enough vehicles for the jams to
propagate to the left boundary. Hence, the jams get saturated and end close to the exit
section.

Quite interesting is the pattern of figure 4.3d. Here, nearly the entire road is covered
by a state of intermediate velocities (30km/h to 70km/h) and relatively high flows
ranging from 1020 vehicles/h to 1440 vehicles/h (see figure 4.4d).

Such a state has not been observed for simpler models [8] and has led to different
interpretations [48, 66] for the CDM and a subsequent model [47] (see section 4.6). The
question arises: To which traffic phase(s) should one assign this spatiotemporal pattern?
And more general: How can such an assignment be done for any of the above traffic
patterns?

4.4 Classification of Traffic Phases

Kerner et al. [58, 69] have presented a method called “FOTO” (Forecasting of Traffic
Objects) that can be used to identify traffic states. The method uses data aggregated
by a local detector (i.e., velocity and traffic flow). Based on a set of rules, it decides
whether the local traffic state is free flow (F), synchronized traffic (S), or wide moving
jam (J). The underlying set of rules can be summarized as follows: (i) if the average
velocity is high, free flow predominates, (ii) if both the average velocity and the flow
rate are low, a wide moving jam passes the detector, and (iii) if at medium velocities
the flow is still high, then the corresponding traffic phase is “synchronized flow”. It is
important to note that the classification of traffic states results from the simultaneous
analysis of both the flow rate and the average velocity because the analysis of only one
variable usually does not suffice to identify a traffic phase. (In addition to this rough
description, we review the FOTO-method’s principles of operation in appendix B.)

In combination with a method called “ASDA” (Automatische Stau-Dynamik Analyse;
Automatic Tracking of Moving Jams), it is even possible to track the propagation of
traffic phases detected by FOTO [56]. An advantage of both FOTO and ASDA is that
they ,,perform without any validation of model parameters in different environmental
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Figure 4.4 The time series of the flow rate from local measurements for the patterns
depicted in figure 4.3. Data was collected by a detector positioned in the middle of
the road at kilometer 3.75. Figures (a)—(d) correspond to the spatiotemporal plots
of figure 4.3.

States of free flow are depicted with a white background color and triangles (A) as
data points. Synchronized traffic is shown with a light gray background color and
rectangular symbols ((J). A dark gray background color and circular symbols (o)
indicate wide moving jams. In section 4.4 we explain how this classification was
done.

From figures (a) and (b) it becomes evident that there is no unique flow rate above
which the traffic flow breaks down in the CDM. In (a) the flow rate reaches values
considerably above 2500 vehicles/h/lane before congestion sets in, whereas it barely
exceeds 2000 vehicles/h/lane in (b) before a breakdown occurs. Also note that
figures (c) and (d) are assigned to different traffic phases, even though the flow rates
are at the same level.

(The corresponding velocity time series is given in figure 4.5.)
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and traffic conditions” [69]. Hence, we could apply the FOTO-method to our simulation
results without modifications.

For this purpose, we have positioned a detector in the middle of the road (at site
2500), which gathers the same data as its real-world equivalent (i.e., flow and velocity
aggregated over 60 subsequent time steps). This allows a more detailed look at the
vehicle dynamics. The velocity time series and the resulting assignment to a traffic
phase for the patterns of figure 4.3 are given in figure 4.5.
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Figure 4.5 The velocity time series from local measurements for the patterns depicted

in figure 4.3. Data was collected by a detector positioned in the middle of the road
at kilometer 3.75.
Based on the local measurements of traffic flow and vehicle velocity, a classification
of the current traffic state was performed according to the FOTO-method. States of
free flow are depicted with a white background color and triangles (A) as data points.
Synchronized traffic is shown with a light gray background color and rectangular
symbols (O). A dark gray background color and circular symbols (o) indicate wide
moving jams. For better readability, dashed horizontal lines indicate the values of
30km/h and 70 km/h, respectively. (Note that these lines are not associated with
the classification of traffic states.)

As expected, the drastic drop of the average velocity in figure 4.3a manifests as a
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wide moving jam, which lasts for eight minutes. Note that the detector data do not
show an abrupt transition from free flow to a wide moving jam (F 4 J). First, we
can observe a transition from free flow to a synchronized phase (F — S) before a wide
moving jam is detected (S — J). Similarly, the recovery to free flow is achieved by a
sequence of two transitions (J — S and S — F).

The wave-like structures of figure 4.3b can easily be identified in figure 4.5b as well.
All these waves show at least one aggregation interval that is identified as a jam. Again,
we find the following sequence of transitions: F - S —J — S — F.

As the congested states of figure 4.3c are located close to the exit boundary, the
detector in the middle of the road measures only free flow (see figure 4.5¢).

More interesting is the time series of figure 4.5d, which belongs to the spatiotemporal
pattern of figure 4.3d. We have already seen (figures 4.4c and 4.4d) that the flow rates
measured at the detector are approximately the same for the patterns of figures 4.3c
and 4.3d. The measurements of figure 4.5d are assigned to the synchronized phase S,
whereas the measurements of figure 4.3c¢ belong to free flow. The difference between
the two measurements becomes evident in the velocity time series. In figure 4.5d, all
detected velocities are between 30 km/h and 70 km/h, and thus they are distinctly lower
than the average velocities of figure 4.5c. The maximum change during subsequent
measurements is slightly below 29km/h (from ¢t = 43 min to ¢ = 44 min). The absolute
value of these changes in the average velocity are relatively high compared with real
traffic flow. Kerner [52, p. 6], for example, reports fluctuations in the range of £10 %
at average speeds of 65km/h. Yet all our measurements are assigned to synchronized
traffic (S) by the FOTO-method. This observation is in agreement with Kerner [55],
who attributes a self-sustaining character to synchronized traffic. The traffic patterns
at the detector’s position cover nearly the entire road (except for few jams close to the
exit region), as a comparison with figure 4.3d shows. Consequently, we expect the time
series and, thus, the classification of traffic phases of figure 4.5d to be representative for
the entire road—independent of the detector’s position.

To get a more quantitative result on the likelihood of the transitions between traffic
phases, we have analyzed the time series of all simulations that are not labeled “F” in
figure 4.2b. The exclusion of the free flow states (F) has two reasons: (i) In the free flow
regime, where vehicles can move without hindrance, we do not expect any transitions
to occur. (ii) In very dilute traffic (i.e., a small value of «), the application of FOTO
is likely to produce erroneous results due to very low vehicle flows. When very few
vehicles enter the road, a detector will detect no vehicle most of the time. However,
when it does detect a vehicle, there is a high probability that no vehicle was detected
during the previous sampling interval. This in turn, leads to a measurement of high
velocity (the single vehicle travels at maximum velocity) following a measurement with
very low velocity (no vehicle), which will be interpreted as a J — F transition by the
FOTO-method (see appendix B).

In addition to the detector in the middle of the road, which we have used in the
analysis of figure 4.5, we have added another detector close to the right boundary at
position x = 7.2 km, where more congestion is expected due to its proximity to the exit
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section. We analyzed the time series of both detectors and classified the observed traffic
states. The classification was performed both with the standard set of rules of FOTO,
which we have used up to now and which comprises four distinct rules as described in
appendix B, and with an extended set of rules comprising 13 different rules [69], which
offers a better distinction between the states J and S.

Table 4.1 shows the resulting probabilities of observing a given transition. As we
have restricted our analysis to the congested regime of figure 4.2b, transitions from or
to state J make up at least 70 % of all transitions at either detector location.

Table 4.1 Probabilities for transitions from one traffic phase to another. We used both
the standard and the extended rule set of FOTO. (As a consequence of rounding,
the probabilities do not necessarily add up to 100 %.)

probability [%] for the detector at
x =3.75km x ="7.2km

transition standard extended standard extended

J—=F 0.2 0.2 0.0 0.3
J—S 44.1 45.3 35.4 37.6
S—F 6.3 5.2 14.8 12.5
S—J 42.8 44.0 34.9 36.8
F—S 5.0 3.7 14.4 11.5
F—1J 1.6 1.7 0.4 1.3

We found that transitions from a jammed state to free flow (J — F) are very
unlikely (< 0.3%). Similarly, F — J transitions occur with a probability of less than
2 %. More importantly, it has to be noted that transitions from free flow to synchronized
traffic (F — S) are more than two to three times more likely than F — J transitions.
At the detector at position x = 7.2 km, they are even more than eight times more
likely—independent of the rule set used.

This is again in good agreement with empirical data. According to Kerner, spon-
taneous F — J transitions cannot be observed in real traffic, but wide moving jams J
always emerge from synchronized flow [54, 56, 61].

Concerning the different sets of rules, we can say that they led to slightly different
quantitative results, but they did not change the qualitative character of our results.

4.4.1 Analyzing Single Vehicle Data

The findings of the previous section might lead to the conclusion that the CDM can,
indeed, reproduce all the traffic phases proposed by Kerner. This would be a clear
contradiction to the three-phase traffic theory, as the model under consideration violates
the fundamental hypothesis of this theory. Therefore, a closer look on the observed traffic
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patterns, whose analysis suggested the existence of three distinct phases, is necessary.
Even though we used Kerner’s own FOTO-method, some of the objections raised against
the approach by Knospe et al. (see section 4.1) might apply to our approach as well. The
usage of data aggregated over intervals of 1 min masks to some extent the inter-vehicle
dynamics. Therefore, we felt it necessary to inspect the single vehicle data, too.

Figure 4.6 shows a snapshot of the vehicles’ spatial headways and velocities at a
fixed time ¢ for the traffic patterns of figure 4.3. As in figures 4.3a and 4.5a, the massive
jam surrounded by free flow is clearly visible in figure 4.6a. Within the jam, both the
vehicles’ headways (i.e., the bumper-to-bumper distance) and velocities are equal or
close to zero. A similar observation can be made in figure 4.6b, where two jam waves
can be identified. Although, in the second jam wave, at kilometer 6, the velocity does
not drop completely to zero. The dilute traffic of figure 4.6¢ is characterized by large
headways (note the different scaling) and high velocities, except for the downstream
boundary, where the effect of the induced perturbations becomes visible as congestion.

Figure 4.6d requires a very careful interpretation. The snapshot shows the headways
and velocities of vehicles in a traffic pattern that FOTO identified as synchronized flow
(figure 4.5d). We clearly see one stopped vehicle at kilometer 4 and a few (11) stopped
vehicles at kilometer 5.7. The question of whether it is still justified to speak of the
pattern of figure 4.6d as synchronized traffic cannot be answered definitively. According
to the macroscopic definition of the synchronized phase, which says that any state of
congested traffic that is not a wide moving jam is synchronized flow [54, p. 21], we
might call the observed traffic pattern “synchronized” with confidence. This implies
that we do not consider 11 stopped vehicles as a wide moving jam. On the other hand,
Kerner defines synchronized traffic as traffic flow “with no significant stoppage” [54,
p. 23]. Here, the question is what constitutes a significant stoppage. Possible criteria
are the number of stopped vehicles, the spatial extent of the stopped vehicles, or the
duration of the stoppage. As already mentioned, the number of stopped vehicles was
11, which seems to be a relatively low value compared with the number of vehicles
in a wide moving jam. (In figure 4.6a we count 68 stopped vehicles, and another 34
vehicles move at 1 site per time step (=5.4km/h) at time ¢ = 30 min.) Moreover, the
distance between the first and last stopped vehicle in figure 4.6d was 132 m. It has to be
mentioned that between these two vehicles there were also five moving ones. Similar to
the total number of stopped vehicles, we consider the spatial extent as small. Therefore,
we also determined the time the 11 vehicles had to wait until they could move again.
The average waiting time was 14 s, and the longest waiting time was 25s. As this is
probably less time than one spends waiting at a red traffic light, the author judges this
waiting time as rather small, too.

Studying the vehicles’ time headways allows a more objective analysis: Kerner et al.
[65] reported that one finds regions of interrupted flow within wide moving jams. These
flow interruptions are characterized by maximum time headways of ¢, max > 20s between
two vehicles. So, for each stopped vehicle, we recorded the time headways that a local
detector at the corresponding vehicle’s position would have measured. The average
time headway of the next ten following vehicles was 4s. Yet, once, a time headway of
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Figure 4.6 Snapshots of the vehicles’ spatial headways (left) and their current velocities
(right) at a fixed time ¢. The figures (a)—(d) correspond to the patterns depicted in
figures 4.3 and 4.5. The snapshot was taken at ¢t = 30 min. Note that figure (c) uses
a different scale for the headway axis.
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33s was observed. All other time headways were below 8s. Consequently, based on
Kerner’s microscopic criterion ¢, max > 20s, we would have to reject the classification of
the FOTO-method for some time intervals. Moreover, we would have to conclude that
the pattern of figure 4.3d is not entirely jam-free, even if no wide moving jam could be
identified via FOTO.

At this point, it has to be mentioned that the three-phase traffic theory also treats
so-called narrow moving jams [54, p. 259], which, in contrast to wide moving jams,
consist merely of an upstream and downstream front. These narrow moving jams can
either grow into wide moving jams or disappear completely, and they are associated
with the synchronized flow phase. Hence, if the aforementioned sequence of stopped
vehicles represents a narrow moving jam, which its length of 132 m suggests, then the
FOTO-method’s classification as synchronized flow is still correct.

Considering all the previous points, we feel that a final answer on how to interpret
the traffic pattern of figure 4.3d is not possible. On the one hand, one might argue that
the single large time headway was a statistical fluctuation rather than a proof of the
existence of a wide moving jam. On the other hand, one might object that only single
vehicle data are a reliable source for the analysis of traffic patterns because detector
data provide incomplete information due to the aggregation process. Yet the sequence
of stopped vehicles covers less than 2% of the considered road segment. Therefore, the
identification of the observed stoppage as a wide moving jam appears not mandatory,
and its identification as a narrow moving jam seems justified as well.

4.4.2 Simulated versus Empirical Data

Keeping this uncertainty in mind, we now use the FOTO-method to classify the observed
and the simulated traffic data of the previous chapter, in particular the time series of
figure 3.7. In contrast to the simplistic setup of section 4.2, the real road segment is a
two-lane road. To apply the FOTO-method to multi-lane roads, averaging the velocity
and the flow rate over all lanes is common practice [56, 69]. So, we averaged the vehicle
flow across lanes, and we calculated the average velocity by a weighted average of the
velocity of trucks and vehicles on both lanes.

The resulting classification of traffic states is given in figures 4.7a, 4.7b, and 4.7c for
the detector cross-sections D2, D5, and D6, respectively (see figure 3.3). The plots on
the left show the averaged empirical data, and the plots on the right show the detectors’
time series from simulations with the CDM.

The comparison between real and simulated data confirms what figure 3.7 already
suggested: the CDM overestimates the temporal extent of congested traffic during the
morning peak hour. At detectors D5 and D6, an uninterrupted sequence of congested
traffic could be found between 7:20 a.m. and 8:55 a.m. for the CDM. The real time series
at these locations show free flow during a 10 min-interval at approximately 8:10 a.m.

Table 4.2, which lists the number of intervals assigned to the traffic phase J, F, and
S, confirms this observation as well, but allows for a quantitative characterization. On
the one hand, the simulation results overestimate the occurrence of congested traffic,
but they underestimate the number of intervals with wide moving jams (J).
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Figure 4.7 A comparison of the traffic state classification according to the FOTO-
method for both the empirical (left) and the simulated (right) time series.
States of free flow are depicted with a white background color and triangles (A)
as data points. Synchronized traffic is shown with a light gray background and
rectangular symbols ((J). A dark gray background color and circular symbols (o)
indicate wide moving jams.
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Table 4.2 Overview of the traffic phases found in the time from 6:00 a.m. to 10:00 a.m.
at the detectors downstream of the off-ramp.

empirical data simulated data

number of 1 min-intervals classified as

detector J S F J S F
D6 16 44 177 8 97 136
D5 14 37 190 8 87 146
D4 5 27 209 6 32 203
D3 9 13 219 0 7 234
D2 8 19 214 0 0 241

Similarly, the insufficient spatial extent of the congested traffic in our simulations
becomes obvious for the detectors D3 and D2, for which congested traffic states were
found only during seven and zero 1 min-intervals, respectively. These intervals were
classified as synchronized traffic (S) without exception. The real time series, however,
do not only show congestion during 21 (D3) and 27 (D2) measurement intervals, but
they also show phases of wide moving jams.

The comparison between the empirical and simulated time series of figure 4.7 as
well as with the time series of figure 4.5 is revealing for another reason: in figures 4.5a
and 4.5b, the transition F—S and the subsequent S—J transition were only one or two
minutes apart. Hence, one might have assumed that the intermediate step S is a mere
artifact of the aggregation process. In figures 4.7b and 4.7c, however, wee see that
the state classified as S by the FOTO-method lasts for more than 10 min in the CDM
before an S—J transition follows. This proves that the CDM is also able to exhibit
long-lasting intervals of synchronized flow that precede a wide moving jam. On the other
hand, we observe such short-lasting S-phases in the time series of the real detectors
in figures 4.7b and 4.7c. Altogether, we can conclude that the CDM is also able to
reproduce long-lasting intervals of synchronized flow in addition to the short-lasting
ones of figures 4.5a and 4.5b, which are both consistent with empirical data.

Finally, it should be noted that we found F—J transitions in the empirical data (see
the arrow-marked F—J transition at 8:11 a.m. in figure 4.7a). To ensure that this effect
did not result from the chosen averaging process, we also applied the FOTO-method
to the raw data of each lane. The analysis of the raw data (not depicted) revealed
F—J transitions as well. This observation, which contradicts Kerner’s three-phase
theory, is rather an evidence of an imperfection of the FOTO-method than of the theory
itself. Remember that the traffic phases are spatiotemporal phenomena, whereas the
FOTO-method relies on local information only. The benefit of the FOTO-method is
that it provides several criteria on which the analysis of traffic states can be based
on. This is important to note because many previous studies appear to be based on a
subjective evaluation of traffic patterns as we will discuss in section 4.6.
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4.5 Deceleration Behavior of the CDM

All previous comparisons showed a good agreement between the CDM and empirical
data. An obvious criticism of the CDM, which we have already mentioned in section 3.1,
is the (potentially) unrealistic deceleration behavior.! The CDM’s maximum braking
capacity is bounded only by the vehicles’ maximum velocity v™** and the temporal
discretization At. For our choice of parameters (table 3.3) this leads to a maximum
deceleration of 33m/s2. Such values are not only unrealistic, their occurrence may
also be a sign of a lack of realism in the description of vehicular dynamics. Braking
maneuvers requiring the maximum deceleration correspond to the situation where a
vehicle travels at maximum velocity and has to come to rest within one time step when
approaching a slow vehicle ahead. In reality, we expect that the vehicle is aware of a
slow predecessor early enough so that it initiates a smooth braking process.

To answer the question of how often unrealistic braking maneuvers occur in the
CDM, we measured their frequency in different simulation setups. In all cases, we
studied a circular road (i.e., periodic boundary conditions) of a total length of 7.5 km
(5001 cells) with either one or two lanes. For both setups, we analyzed the vehicles
dynamics for various vehicle densities p. Moreover, we performed the simulations with
a share of trucks of either 0% or 10 %.

Each simulation comprised 11 x 10 time steps from which the first 1 x 10% were
discarded. After each time step, we determined the acceleration or deceleration of each
vehicle.

The resulting statistics is depicted in figure 4.8. The plots show the relative frequency
of acceleration and deceleration events with a given acceleration and deceleration rate,
respectively. The results from simulations where all vehicles were fast ones (i.e., 0%
trucks) are given on the left (figures 4.8a and 4.8¢c). Analogously, the plots on the right
(figures 4.8b and 4.8d) give the corresponding distributions where 10 % of all vehicles
were trucks. The upper two plots show the results for one-lane roads, whereas the lower
plots give the results for two-lane roads.

In all cases (i.e., one-lane or two-lane road, 0% or 10 % share of trucks, various
densities), the distributions have a peak in the range from —1.5m/s? to 1.5 m/s?>—values
that are in good agreement with our expectations and with reality.

To estimate in how many cases the deceleration must be called “unrealistic”, we
assumed an upper bound for a vehicle’s braking capacity of 9m/s? [110]. Vehicles did
not exceed this value in 99.5% of all cases in all simulation setups. Even if we limit the
maximum braking capacity at 3 m/s?, deceleration rates stay below this threshold in
more than 96.5 % of all cases.

Consequently, unrealistic braking events are rather scarce, although they do occur.
Events requiring an emergency braking with maximum deceleration happen with a
probability of less than 10~7, if they occur at all.

A closer look reveals that the highest probability for unrealistic braking maneuvers is

Tt has to be said that the unrealistic deceleration behavior is no inherent feature of traffic cellular
automata in general, as some more recent models show [91, 127].
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Figure 4.8 Relative frequencies for the acceleration and deceleration rates observed at
various traffic densities. The top row ((a) and (b)) shows the results for a single-lane
road, the lower row ((c) and (d)) for a two-lane road. The plots to the left were
obtained from simulations with a single type of vehicles. In the figures on the right
the share of trucks was 10 %.
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at intermediate traffic densities of 20 vehicles/km/lane and 26 vehicles/km/lane. In this
density regime, vehicle interactions are frequent and strong. In denser traffic, vehicles
mutually hinder each other such that velocities and, therefore, deceleration rates are low.
In dilute traffic, on the other hand, vehicles hardly interact but travel with maximum
velocity. Consequently, they rarely need to brake.

In heterogeneous traffic with two types of vehicles, however, even in dilute traffic
vehicles approaching a slower one have to brake more frequently and stronger, which
can be seen on the right of figure 4.8. This effect is particularly pronounced on the
one-lane road where there is no possibility to overtake trucks.

In homogeneous traffic (i.e., 0% trucks), there was not even a single unrealis-
tic braking maneuver observed in dilute traffic (i.e., p = 6vehicles/km/lane and
13 vehicles/km/lane) on the single-lane road. On the two-lane road, the maximum
deceleration observed was 13 m/s?. Hence, although the CDM shows unrealistic values
for a vehicle’s deceleration, these events make up only a small fraction of all vehi-
cle updates. The benefit of this inadequacy is that vehicle motion in the CDM is
accident-free.

4.6 Discussion

In this chapter we thoroughly investigated the dynamics of the CDM. We started our
investigation with a very simple simulation setup, which represented a one-lane road
with open boundaries. By varying the inflow and outflow probabilities into and out of
a simplified road segment, we were able to obtain a phase diagram of the CDM (see
figure 4.2). The sharp line separating free and congested flow in the phase diagram may
be evidence of a first-order phase transition.

Beyond the distinction between congested and free traffic flow, we aimed for a more
detailed analysis of the congested phase. In particular, we wanted to study congested
states with regard to Kerner’s three-phase traffic theory. According to this theory, the
CDM is not expected to reproduce synchronized traffic [66]. We found, however, traffic
patterns (figure 4.3d) that showed several characteristics of synchronized traffic. For
the further analysis of these traffic patterns, we had to investigate the spatiotemporal
dynamics on the road (see figure 4.3). Besides the traffic phases free flow (F) and wide
moving jams (J), we also found states with medium average velocities and relatively
high flow rates which can be interpreted as a first sign of synchronized flow (S).

Notwithstanding these findings, it is still not clear whether the CDM reproduces
the synchronized phase in the sense of Kerner’s three-phase traffic theory. All we can
say is that we found three clearly distinguishable states or “phases”.

With respect to the difficulty of characterizing traffic states, let us refer to two
articles by Kerner et al. [66] and Jiang and Wu [48]. In the article by Kerner et al. [66],
in which the CDM was investigated, the spatiotemporal pattern that we found in figure
4.3d was classified as an “oscillating moving jam”. It appears that the same pattern
was classified as synchronized flow by Jiang and Wu [48, Figs. 3+4], who analyzed an
extension of the CDM [47]. (Their extended model incorporates some of the findings of
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the three-phase traffic theory.) The fact that the seemingly identical traffic pattern led
to different interpretations by different authors illustrates the difficulty of classifying
traffic states.

Therefore, we decided to apply a rule-based method to classify traffic phases. The
FOTO-method, which we used for this purpose, certainly has some limitations in
assessing the spatiotemporal dynamics as it is based on local measurements, but it
provides “hard” and objective criteria. The application of such a rule-based technique,
thereby, facilitates the comparability of our results with both empirical data and other
models.

The classification (figure 4.5) shows that the CDM is able to reproduce at least some
aspects of Kerner’s three-phase traffic theory correctly. In particular, the pattern of
figure 4.5d was indeed identified as synchronized flow by the FOTO-method.

Yet some qualitative differences remain as the single vehicle data of figure 4.6 prove.
In contrast to models based on three-phase traffic theory, the fluctuations of velocity
(figures 4.5d and 4.6d) are considerably higher in the CDM (e.g., cf. [66, Fig. 9]). This
is a consequence of the different modeling approach. In early traffic cellular automata
(e.g., [8, 102]), a vehicle always accelerates when it is safe to do so. In the CDM this
effect is partially compensated by an anticipatory component. In models based on the
three-phase traffic theory (e.g., the models presented in [66]), on the other hand, a
vehicle may accept any gap if its velocity is within a given range that is determined by
the models’ rules of motion.

For more quantitative statements on unrealistic braking maneuvers, we also analyzed
the rates at which vehicles decelerate in section 4.5. As the CDM avoids collisions only
by allowing for a practically unlimited braking capacity, we studied how often braking
maneuvers occur that require unrealistically high deceleration rates. We found that the
probability for such maneuvers is low (< 0.5 %) but not negligible. If the inter-vehicle
dynamics, where realistic deceleration rates are desirable, play only a minor role, we
consider the CDM as a model that satisfyingly reproduces the traffic dynamics on
various scales.

However, let us emphasize that we fully acknowledge fundamental conceptional
differences between models based on the three-phase traffic theory and models within
the fundamental diagram approach. From a more practical point of view, these differences
apparently do not result in fundamental differences of the traffic patterns observed.
Therefore, the application of the CDM for traffic simulations (e.g., the simulation of
large scale traffic networks [136]) is definitively justified.
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Optimizing Traffic Flow by Vehicular
Communication

The previous chapters presented vehicular traffic as an interesting research topic and
discussed the ability of computer models to reproduce real traffic dynamics. We saw
that, from a physical point of view, a traffic breakdown corresponds to a phase transition
from free flow to congested traffic.

There is, however, another and probably more common perception of congestion.
Traffic congestion is an annoyance; it costs time, fuel, and, thus, money. In 2010, for
instance, the average US auto commuter spent an additional 34 hours in his car and
wasted 14 gallons of fuel simply as a result of congestion [126]. A comparison with 1982
(14 hours, 6 gallons) shows that the growing traffic volume poses an ever increasing
problem to our transportation systems.

Simply extending the road network is not suited to fight congestion due to spatial,
financial, and environmental constraints. Recent progress in the area of information and
communication technology, however, promises to make today’s transportation systems
not only more efficient, but also safer, more reliable, and more convenient. All these
modern approaches to improve today’s transport networks are subsumed under the
general term Intelligent Transportation Systems (ITSs).

One especially promising field in this context is vehicular communication. By
vehicular or vehicle-to-vehicle communication we mean information exchange between
neighboring vehicles. For example, a vehicle initiating an emergency braking could
emit a warning message so that following vehicles would be able to timely adapt their
velocity.

The required technology for this purpose is very common. Similar to wireless
computer networks (WLAN), vehicles equipped with a communication device can
establish a wireless communication network to send and to receive messages. Such
Vehicular Ad Hoc Networks (VANETS) are considered a central part of ITSs. In principle,
VANETS could enable all parties involved in traffic (e.g., vehicles, traffic lights, or road

This chapter is largely based on and taken from the author’s articles [T74, T76] (see page 114).
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side units) to exchange information and to coordinate their behavior. As no underlying
infrastructure is required and as message exchange is carried out with low latency times,
we also consider VANETSs as an excellent tool to reduce congestion in the context of
ITSs.

In this chapter, we will address the question of how vehicular communication can
be applied to make transportation more efficient. Before we discuss the application of
vehicle-to-vehicle communication to traffic flow optimization, let us review the physical
foundations of vehicular (i.e., wireless) communication.

5.1 Radio Wave Propagation Fundamentals

This review is limited to the essential aspects of radio wave propagation theory that
are necessary to understand the settings used in our simulations and to judge their
applicability to vehicular networks.

The characteristics and properties of a radio channel limit both the transmission
range and the amount of data which can be transmitted per time interval. In real-world
scenarios, radio waves are subject to reflection, scattering, and diffraction. As any
object in the vicinity of a receiving or transmitting node (i.e., a vehicle) can possibly
act as a source of either of the aforementioned effects, a realistic treatment of radio
propagation would have to take into account the nodes’ environment. Considering the
high mobility of nodes in the case of vehicular networks with relative velocities up to
400 km/h, this approach is nearly intractable. Therefore, various mathematical models
have been proposed to mimic the properties of radio wave propagation [119, 128].

5.1.1 Propagation Models

In general, propagation or path loss models describe a functional dependence between
the strength P; of a transmitted signal and the received signal power P, at a distance d
of the sender:

P.(P;,d). (5.1)

This functional dependence, called path loss, is the most important magnitude in the
analysis and modeling of wireless radio channels.

5.1.1.1 Free Space Propagation Model

The free space or Friis propagation model assumes a clear line-of-sight between sender
and receiver. Moreover, it ignores any multipath effects such as diffraction, scattering,
or reflection. In this case P;(F;,d) is given by [29, 119]:

P,G{G\?
Pi(Py,d) = @

for isotropically transmitting and receiving antennae. Gy and G, denote dimensionless
gain factors of the transmitting and receiving antenna. The signal’s wavelength is given
by A [m].

(5.2)
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Due to the simplifications made for the derivation of equation (5.2), the free space
model can only serve for estimating an upper bound of signal strength at a given distance
in most real-world scenarios.

5.1.1.2 Two Ray Ground Reflection Model

A more realistic propagation model takes into account a ground-reflected propagation
path in addition to the line-of-sight path of the Friis model. This results in a faster
decay of the received power and leads to the formula of the two ray ground reflection
model [119]:

P.GiG:
P(P,,d) = tdi neht, (d> Vhh). (5.3)

The variables hy and h, denote the heights of the transmitting and receiving antenna,
respectively. Here, the signal decays with the inverse fourth power of the distance and
is independent of the wavelength.

At short distances, the contribution of the ground-reflected path should be neglected,
and the free space model should be used [26, 119]. A crossover distance d.

4
de = ;hthr (5.4)

guarantees the continuity of P, (P, d).

5.1.1.3 Nakagami-m Model

Both the Friis and the two ray ground reflection model are deterministic models. This
leads to an unrealistically sharp cutoff in reception range (see figure 5.1a). Yet multipath
propagation causes the received signal to fluctuate rapidly at short time and length
scales. As a consequence of these fluctuations, the reception can no longer be guaranteed
at short distances, but the reception also becomes possible over distances that are larger
than in the deterministic case (see figure 5.1b).

Probabilistic propagation models can reproduce this behavior by employing a proba-
bility distribution. From the distribution’s density function one obtains the reception
probability. A probabilistic propagation model, which has proven to give a realistic
description of signal propagation, is the Nakagami-m model [104]. Its probability density
function (pdf) p(zx) is given by:

2mm$2m71
p(z) = eI 0> 0, m >

T , (5.5)

| =

where I'(-) denotes the Gamma function and m is a shape factor which can be used
to model the distribution’s width. The distribution’s second moment (x?) is given by
Q. For m = 1, the pdf of the Nakagami model reduces to a Rayleigh distribution.
The Nakagami model can therefore be understood as a generalization of the Rayleigh
distribution.
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When the Nakagami-m model is applied to calculate signal powers, we can identify
(x?) as the expected power at distance d. The expected power in turn can be estimated
via equations (5.2) or (5.3).
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Figure 5.1 A comparison of the Friis, free space, and Nakagami path loss models: (a)
The deterministic nature of the first two models becomes apparent by the sharp
change of reception probability at a fixed distance. For the Nakagami model the
average reception probability shows a continuous transition from one to zero with
increasing distance. (b) The stochasticity of the Nakagami model, however, causes
large fluctuations of the received signal strength at all distances.

5.1.1.4 Propagation Models for Highway Scenarios

Due to its importance for the analysis of the radio channel and of communication
protocols, propagation models have become an intensively studied topic (see, e.g., [14,
32, 49, 129]). There are, however, only few empirical measurements evaluating the path
loss characteristics in real-world VANET scenarios. We will summarize some of the
findings with respect to highway traffic, which is the subject of our own research.

Kunisch and Pamp [88] performed measurements of the car-to-car radio channel in
rural, highway, and urban environments. As a result of varying traffic densities, their
measurements include reception characteristics for both line-of-sight and non-line-of-
sight communication. The authors report that path loss can be described by an adjusted
two ray model. Measurements by Karedal et al. [49] confirm the applicability of the two
ray propagation model for rural environments but suggest using a power law to model
path loss for highway scenarios. It should be noted, however, that on the highway where
Karedal et al. performed measurements ground reflection may have been obstructed by
a wall separating the different travel directions.

Yin et al. [146] analyzed empirical data collected on freeways around Detroit, USA.
They report that the Nakagami model is well suited to fit the observed path loss if
different shape factors are used for small and large distances, respectively. At low
distances (100 m and less), the shape factor should be chosen from the interval [1.0,1.8]
and from [0.7,1.0] for larger distances. Similarly, Taliwal et al. [133] found a good
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agreement between the observed channel characteristics for highway environments and
the Nakagami distribution. According to their measurements the shape factor lies
between 0.5 and 1 and the expected power follows the two ray ground reflection model
with a crossover distance of about d. = 160 m.

5.1.2 Noise, Interference, and Signal Reception

Signal strength is not the only factor that governs the connectivity in wireless networks.
Due to the lack of a central authority in wireless networks, coordinated communication
between senders and receivers cannot be guaranteed. Therefore, several senders may
simultaneously try communicating with the same receiver. An example of such a scenario,
known as hidden node problem, is illustrated in figure 5.2a. The communication range
of the two senders A and C' is shown as circles with the corresponding node in its center.
Both nodes can communicate with node B which is within their communication range,
but they are not aware of each other. So, each of them might start sending messages
assuming B is ready to receive.
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Figure 5.2 An illustration of the hidden node problem. In the configuration depicted
in (a) neither sender A nor C' are able to determine whether B is already receiving.
In the case of simultaneous transmission, the ability of B to receive either of the
signals depends both on the absolute signal power, which has to exceed a threshold
value Py, and on the ratio of signal powers. In figure (b) there is no reception in
cases (i) and (ii). Signal A can only be received if its signal strength divided by the
sum of all remaining signal powers (in the depicted case: only C) is larger than 3.

Reception is likely to fail in this situation, unless one signal is much stronger than
the other. A receiver is able to capture the strongest of several interfering signals if it is
clearly distinguishable from the others. For this to happen the signal to interference
plus noise ratio (SINR) must be above some threshold 5. The SINR measures the
strength of a given signal relative to all other interfering signals including thermal noise
(x kpT) [34].
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Figure 5.2b summarizes the conditions for successful reception, as described in the
last two sections: both signal strength as well as the SINR have to be above threshold
values for successful communication.

5.2 Simulating Inter-Vehicle Communication

For both practical and economic reasons much of the work in the field of VANET-
research is done via computer simulations as a large number of equipped vehicles would
be necessary in real-world experiments. For the sake of completeness, we give a brief
overview of current challenges and approaches regarding the simulation of VANETS.

Many current VANET simulations rely on static vehicle traces generated by a traffic
simulator, which they pass to a network simulator (e.g., ns2 [26] or JiST/SWANS [9-11]).
The shortcoming of this approach is that vehicles cannot change their driving behavior
or route choice in response to the received messages. Taking into account the interaction
between vehicle motion and message exchange requires the combination of both a
realistic traffic flow model and a communication model.

The network simulations in the rest of this thesis used the JiST/SWANS platform [9-
11, 72] which combines a discrete event simulation engine with a scalable wireless ad hoc
network simulator (SWANS). Extensions by Ibrahim and Weigle [44] enable the network
simulator to interact with the underlying mobility model. The resulting bidirectional
coupling is illustrated in figure 5.3.

vehicles’ position
vehicles’ velocity

Network simulation Traffic simulation
path loss vehicle motion
interference vehicle generation
noise lane changes
MAC layer message evaluation

messages
K received -/
Figure 5.3 For vehicles to react to the received messages and for the correct prediction of
the signal reception statistics, a coupling between the network and traffic simulations
is necessary. The microscopic traffic simulation calculates the position and velocity
of each vehicle on the road. This information is required by the network simulation

to calculate which vehicles successfully receive a sent message. Such a received
message, in turn, may influence the vehicles’ motion.
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5.3 Evaluating Traffic Information and Improving Traffic
Flow

Our approach to improve traffic flow via vehicular communication is based on two
points: (i) vehicles autonomously estimate the current traffic situation and broadcast
this information. (ii) based on this estimate and if required by the traffic state, vehicles
adapt their driving behavior. We admit that the first point, VANET-based traffic state
estimation, has already been investigated earlier. Due to the nature of VANETSs, where
the topology is rapidly changing, exchanging messages with a constant transmission
power and at a fixed transmission interval is likely to show an increase in package
collisions at large vehicle densities. Therefore, it was suggested to adapt either the
transmission range [4] or the transmission interval [130] depending on the local vehicle
density. To estimate the local density, Artimy [4] proposed analyzing the vehicle’s
mobility pattern. Similarly, Sommer et al. [130] suggested analyzing the number of
package collisions and the number of neighboring vehicles for this purpose. They showed
that these adaptive schemes allow for a more efficient and reliable use of the network
resources.

The focus of the previous studies, however, was on the detection of congestion or of
large vehicle densities. Applications aiming at easing congestion, however, require more
information than knowledge about the local vehicle density. Several studies (e.g., [89,
107, 145]) suggested using VANETS to identify congested roads and to offer alternative,
less congested routes. In addition to the risk of causing congestion on the alternative
routes, these strategies become effective only after a traffic breakdown has already
occurred.

More innovative approaches search to influence the driving behavior that causes the
breakdown. Kerner et al. [64] suggested that the exchanged messages should comprise
the length of a recommended space gap that vehicles are to maintain. Vehicles that
adapt their space gap according to the recommendation are less likely to provoke a
traffic breakdown. Similarly, Fekete et al. [27] proposed that vehicles adapt their own
velocity to the average velocity of neighboring vehicles, which they determine via inter-
vehicle communication, thus reducing inhomogeneities in traffic flow. The previous two
works studied the influence of their strategies for relatively high penetration rates of
communicating vehicles of 100 % and 60 %, respectively. Such rates will be reached only
long after a successful market introduction of VANET devices [96]. Moreover, it is not
clear when, if at all, vehicles are to alter driving behavior.

Therefore, we developed a VANET-based strategy to reduce traffic jams, which
explicitly accounts for human reaction time and becomes effective at low penetration
rates. Our approach aims to identify “critical” road segments and to prevent a traffic
jam before it actually occurs. In this context, we will call a road segment critical
when a breakdown is likely to occur on it. Therefore, a purely density-based analysis
does not suffice. For, as we have already seen (see figure 2.2), the traffic state is not
definitely determined by the traffic density. With traffic breakdowns being caused by
misbehavior of human drivers in dense traffic, we suggest using periodically emitted
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short messages, so-called beacons, to analyze the current traffic state. On the basis
of this analysis, communicating vehicles may change their driving behavior in dense
traffic. After changing their driving behavior, these vehicles inform following ones
about the discovery of a critical road segment, and they are less likely the trigger of a
traffic breakdown. This makes our method different from the aforementioned, previous
approaches that guide vehicles to less congested routes to escape congestion. In addition
to that, our simulations do not only use very realistic radio propagation and mobility
models but also empirical traffic data from a German Autobahn.

5.3.1 Beacons for Congestion Warning

Our approach to use vehicle-to-vehicle communication to ease congestion is solely based
on beacon messages. Beacon messages are periodically broadcast status messages
containing a vehicle’s position, its velocity and acceleration, a unique vehicle identifier,
and a time stamp.! This information suffices to estimate the local state of traffic [4, 130].
In our approach we suggest expanding a beacon’s content by two additional variables: a
position jpos and a time stamp jiime marking a critical road segment. By employing
the data that are already sent in regular beacons and merely extending it with two
additional data fields (jpos and jiime), we do not create overhead due to additional
packets in the network. The size of a beacon usually does not exceed 100 bytes; however,
to pay attention to expected future demands (e.g., security) we fix the beacon size to
500 bytes in our following considerations to demonstrate that our approach is able to
work with those beacon sizes.

From the beacons a vehicle receives during an interval [¢, ¢+ 0t), it may calculate the
average velocity (vg(t))s: of all transmitting vehicles ahead. When the average velocity
drops below a given threshold T,, for two successive intervals at time ¢ ({(vg(t—9t))se < T
and (v, (t — 26t))s; < T,), it marks the segment as critical by setting jiime < ¢ and
Jpos < x(t) + ¢, where z(t) denotes the vehicle’s current position at time ¢t and ¢, an
average communication range. Vehicles receiving a notification about such a critical
traffic condition append the information to their own beacons (see figure 5.4a).

Following vehicles use this information to decide whether to change their driving
behavior. For this decision, a vehicle has to judge the relevance of the information
about a critical road segment. Such information is considered as relevant if the vehicle
is close to the said segment, if it is approaching it, and if the information is sufficiently
up-to-date (see figure 5.4b). To quantify the proximity to the road segment and the
timeliness of the information, we introduce temporal and spatial thresholds T and T},
respectively. A Boolean variable j,001 indicates whether the vehicle has to change its
driving behavior. Thereby, the aforementioned conditions can be written as:

Jbool (t) «+ false
if (t — jtime < Tt and 0 < jpos — x(t) < T):
Jbool(t)  true

!Periodic beacons that we use for message exchange are essential for most safety applications [109]
and have been extensively studied. As the technical aspects and challenges are not in the focus of this
section, we refer to the article by Mittag et al. [99] and the references therein for further information.
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Figure 5.4 How the proposed strategy works: when a vehicle (at xz2(t1)) detects
that the average velocity of downstream vehicles (v, (t; — t))s; is smaller than the
threshold T, and if also (vg(t1 — 20t))st < Ty, it seeks to change its driving behavior
(Jbool(t1) < true). It also appends this information to its own beacons. Thereupon,
a following vehicle [formerly at x;(¢1)] that receives a beacon from the vehicle
formerly at xa(t1) changes its driving behavior, provided that this information is
still considered as up-to-date (i.e., not older than 7}). (a) Critical road condition is
detected at time t;. (b) Upstream vehicles are warned at time to (2 > ¢;) provided
that the warning is still up-to-date (to < T} + 7).

Consequently, T; and T define a temporal and spatial horizon of relevance for traffic
information. This helps to reduce the load on the radio channel; the congestion warning
is of value only for a limited number of vehicles in a large network and, thus, need not
be broadcast outside this area. For simulations we set T; = 30s and Ts = 3km. As
will be discussed later, we found our results to be relatively insensitive to the concrete
choice of Ty and T;.

The threshold below which a traffic condition is classified as critical is set to
T, = 81km/h. This value is 10.8km/h (3 m/s) below the maximum velocity of trucks in
our simulation (see table 3.3) and indicates that vehicle interactions and perturbations
are strong enough to make even slow vehicles (i.e., trucks) slow down. Empirical
observations showing that maximum traffic flow is reached at approximately 80 km/h
support this choice of parameter (see, e.g., [137]). Finally, we set 6t = 1s and ¢, = 150 m.
The variable ¢, estimates the distance to the critical road segment. Compared with
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using the average position of transmitting downstream vehicles, choosing a constant
value for ¢, proved as particularly advantageous at low penetration rates when only a
single communicating vehicle is sensed downstream.

5.3.2 Vehicle Motion and Adapted Driving Behavior

For the simulation of vehicle motion, we used the CDM again. Here, we describe the
adaptions that we made for a change of driving behavior in case of approaching a critical
road segment. A detailed review of the model with the proposed modifications can be
found in appendix C.

To motivate our modifications, let us review the meaning of the CDM’s probabilistic
variable p of equation (3.10) that causes minor fluctuations in a vehicle’s velocity,
reflecting the drivers’ incapability to maintain a constant velocity. The original CDM
distinguishes three cases when determining p for a vehicle labeled n:

Db, if bn+1(t) =1 and th(t) < ts(t),
p< § po, ifva(t) =0, (5.6)

Pd, otherwise.

In the first case (p = pp), the vehicle n, following the preceding car n + 1 with time
headway ty,(t), reacts to the predecessor’s activated brake light (b,,41(t) = 1) if it is within
an interaction horizon ts(t) (t,(t) < ts(t)). This case was introduced to appropriately
mimic the drivers’ tendency to overreact in dense traffic. This phenomenon, sometimes
called “over-deceleration effect” [54, p. 260], results from a driver’s finite response time to
the preceding car’s brake lights. If the time headway is too small (i.e., t,(t) < t5(t)) the
following driver performs an unnecessarily strong braking maneuver to avoid collision.
The second case (p = pg), known as slow-to-start rule, effects a reduced acceleration rate
for vehicles starting from rest. The last case models the random fluctuations observed
even in free traffic flow. From these explanations, we can already conclude the relation
Pd < po < Db.

In the modified model, we require vehicles which changed their driving behavior (i.e.,
Jbool(t) < true), to keep a larger gap to the preceding vehicle. Such an increased gap is
created simply by not accelerating until the gap is large enough. An additional gap,
whose length we denote by g, (t), is considered as sufficiently large if it is larger than the
distance traveled during the driver’s reaction time teaction Of 18 (freaction = 1 s)l, ie., if
Gn(t) > v, (t) X treaction. It is intuitive that a larger gap decreases the probability for
the occurrence of an over-deceleration effect. (For a detailed discussion of the impact of
driving behavior on traffic flow, we refer to a recent article by Kerner [50].)

Consequently, we modified the calculation of the randomization parameter p by
introducing a fourth parameter p. (py < p. < pp) to model the situation described

!The reaction time does not only differ from person to person but also from situation to situation
for a single person [43]. Therefore, our choice for the driver reaction time must be undestood as an
average value. This value is in good agreement with empirical data that report the median of the driver
reaction time is below 1second [97, p. 42]. We admit, however, that any other choice would not have
been possible in the CDM due to the model’s temporal discretization.
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above:

Db, i bpp1(t) =1 and t,(t) < ts(t)
and g, (t + 1) < vn(t) X treaction,

De, if byr1(t) =1 and t,(t) < ts(t) (5.7)

and gn(t + 1) > vn(t) X treactions

Do, if v,(t) =0

Dd, otherwise.

For the simulations, we adopted the values for py, pg, and py from section 3.1.3 and set
pe = 0.8 X py.

5.3.3 Simulation

We used computer simulations to assess the impact of the proposed strategy, and we
made a big effort to provide a high degree of realism. Therefore, our simulation combined
a realistic traffic model (the CDM, see chapters 3 and 4), empirical traffic data, and a
realistic path loss model (the Nakagami-m model, see section 5.1.1.4). (At this point,
it should be mentioned that some very recent studies [14, 98] promise an even better
path loss modeling by explicitly taking into account vehicles as obstacles for signal
propagation.)

5.3.3.1 Simulation Setup

As scenario we used the same 13 km-long two-lane highway segment as in section 3.2. In
contrast to section 3.2, however, we also simulated the traffic flow of the opposite driving
direction as well. This is necessary to put a realistic load on the radio channel because
vehicles traveling in the opposite direction use the same channel to communicate. For
simplicity, we used identical vehicle inflow rates for both driving directions, but we
omitted the on-ramp and the off-ramp for the newly added, opposite driving direction.
Therefore, flow in each direction is approximately 36 000 vehicles per day with additional
7000 vehicles joining the road via the on-off-ramp system in one of the two directions.
Vehicles leaving the system, as required by the boundary conditions, were selected
randomly without preference for (non-)communicating vehicles. Therefore, the off-ramp
has no influence on the proposed strategy, but it is necessary to partially compensate
for vehicles entering via the on-ramp. Similarly, entering vehicles are communicating
according to the penetration rate of communicating vehicles. The lane width was set to
3.75m with additional 2.5 m between opposite driving directions. The geometry of the
entire road segment is given in figure 5.5.

Every radio equipped vehicle shares an identical set of physical parameters that
are summarized in table 5.1. All values are in agreement with the draft standard [24]
by the ASTM. As data rate, we chose the minimum of the mandatory rates 3, 6, and
12 Mbits/s. For modeling radio propagation and signal fading we used the Nakagami-m
model, which we chose on grounds of the good agreement with real-world measurements
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Figure 5.5 Schematic sketch of the highway segment used for simulations. The locations
of loop detectors are labeled as D1,..., D10.

described in section 5.1.1.4. For communication distances of 80 m and above, we set
m = 0.75. For smaller distances, where a clear line-of-sight is likely to exist, we set
m = 1.5.

The medium access control (MAC) layer was implemented according to the ASTM-
standard [24], too. Status messages have a constant size of 500 byte and are broadcast
with a frequency of 4 Hz. Note that both message size and frequency fulfill the com-
munication requirements for safety applications presented by the US Department of
Transportation [109].

Table 5.1 Properties of radio devices and radio channel.

PHY
fading Nakagami-m
interference cumulative noise & capture effect

transmission power 17 dBm (= 50.12mW)
reception threshold — -81dBm (~ 7.94 x 1079 mW)
sensitivity threshold -91dBm (= 7.94 x 1070 mW)

noise -99dBm (= 1.26 x 10719 mW)
antenna gain 0dBm (1 mW)
SINR 10
data rate 3 Mbits/s
MAC
beacon size 500B
beacon interval 250 ms

jitter 4%
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5.3.3.2 Results

To assess the impact of vehicle communication on traffic low, we analyzed the travel
times for the considered highway segment and the given boundary conditions. Travel
time is probably the most intuitive quality measure in this context. For commuters
travel time is even the most important determinant of the highway quality of service [40]
as they consider travel time as “lost”. The microscopic simulation recorded the time it
took each vehicle to pass the entire stretch of highway considered. Figure 5.6 shows
the average travel times for different penetration rates of communicating vehicles. The
results were averaged over at least five independent simulation runs per penetration
rate. The average travel time drops from 518 s without vehicle-to-vehicle communication
to 440s when 40 % of all vehicles are equipped with communication devices. This
corresponds to a travel time reduction of more than 15 %. Error bars mark the positions
of the 0.1- and 0.9-quantiles, respectively, which means 80 % of all vehicles were able to
cross the highway segment within the error-bar-indicated interval. The lower bound
is mainly delimited by the minimal travel time following from the vehicles’ maximum
velocity (see table 3.3). The upper bound, on the other hand, reflects the traffic dynamics
and the existence of breakdowns. Here, the benefits of vehicle-to-vehicle communication
become more obvious; with one fourth of all vehicles being able to communicate, the
0.9-quantile drops for more than 35 % from 819s to 527s.
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Figure 5.6 Average travel times for different penetration rates. Error bars indicate the
0.1- and 0.9-quantiles. The lower curve shows the corresponding standard deviation.

In addition, the lower curve in figure 5.6 shows the standard deviation of observed
travel times. The standard deviation can be understood as a measure of travel time
reliability [40]. It shows a similar dependence on the penetration rate; with one in four
vehicles being able to communicate, the standard deviation’s value measures only 96 s
compared with more than 200s when communication is turned off.

To determine the average increase of time delay in each scenario (i.e., for each
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penetration rate), we calculated an optimal travel time. To do so, we started a vehicle
at each second of the simulated day on an empty road and recorded the corresponding
travel time. Taking into account the share of trucks and trucks’ increased travel time
due to their reduced maximum velocity (see table 3.3), one obtains an optimal average
travel time of 425s. This time serves as a reference value in figure 5.7, which shows how
much the scenarios deviate from the ideal condition with no interactions.
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travel time increase [%)]
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Figure 5.7 Average travel times compared with an ideal travel time without vehicle
interactions. This time is not expected to be reached because, even in dilute traffic,
interactions between vehicles in the merging region of the on-ramp casually cause
braking maneuvers. Nevertheless, for a penetration rate of 40% the increase in
average travel time is only 3.6 % compared with the ideal travel time.

The temporal traffic dynamics is illustrated in figure 5.8 where travel times of single
vehicles are plotted against the hour of day. The application of vehicle communication
significantly reduces the duration and the severity of the congestion observed in the time
from 6:30 a.m. to 9:30 a.m. This result is confirmed by the analysis of the stationary
detector data shown in figure 5.9.

An even better visualization can be obtained from the space—time—velocity plots
of figure 5.10. The figure illustrates very well the decrease of both the spatial and
the temporal extent of congestion for an increasing share of communicating vehicles.
Upstream of the on-ramp, i.e., for positions z > 11km, the average velocities show
homogeneous vertical stripes for some time intervals. This follows from the speed limit
that was applied (see section 3.3.1) to the end of the road segment and that causes all
vehicles to move at the same speed. Consequently, all plots of figure 5.10 show a similar
spatiotemporal pattern for x > 11 km.

The speed limit might also explain why the congested traffic does not entirely vanish
at high rates of communicating vehicles. Therefore, we repeated our simulations for
an idealized highway scenario. This idealized scenario studied a two-lane highway
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Figure 5.8 The evolution of single vehicle travel times during the morning peak hour.
For better readability, the plot shows only data from vehicles of type “car”, and a
moving average over ten subsequent data points is applied.
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Figure 5.9 Exemplary time series of the two detector locations D5 (top) and D6
(bottom) at various rates of communicating vehicles. The left column shows the
empirical time series. The next columns (from left to right) show the simulated time
series for 0%, 10 %, 20 %, and 30 % communicating vehicles. As can easily be seen,
the extent of the breakdown decreases with an increasing rate of communicating
vehicles.
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Figure 5.10 The spatiotemporal evolution of the average velocity for a rate of com-
municating vehicles of (a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 35%, and (f)

40 %.
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segment of length 18 km (12000 cells) with a 300 m-long on-ramp located 1.5km from
the downstream boundary. The on-ramp inflow was kept constant at 450 vehicles/h
during the entire simulation time of 6.5h. To simulate peak hour traffic, the demand of
the main road was varied as follows (see figure 5.11a): the inflow of the initially empty
main road was 1000 vehicles/h/lane for the first 30 min. Next, the inflow was linearly
increased to 1400 vehicles/h/lane during a 2 h-interval. For the following 3 h, the inflow
rate was linearly decreased to 1000 vehicles/h/lane where it was kept constant until the
simulation ended. The share of trucks was kept constant at 10 % in our idealized peak
hour scenario. Thus, a total of 15000 vehicles entered the main road from the upstream
boundary and an additional 2925 vehicles from the on-ramp. The maximum value of
1400 vehicles/h/lane could be reached in all simulations presented below (i.e., jams did
not propagate to the upstream boundary).

Figure 5.11 shows the spatiotemporal dynamics of all vehicles moving on the road
with the on-ramp.

One can identify the onset of congestion in the on-ramp area after approximately
2.5h (i.e., after the main road inflow reached its maximum). As a result of the decreasing
flow after 2.5h, free flow was restored after maximally 6 h in all cases. Without vehicle-
to-vehicle communication (figure 5.11c¢) the impact of the on-ramp induced traffic
breakdown could be observed even 10 km upstream of the on-ramp. With an increasing
percentage of equipped vehicles (figures 5.11d, 5.11e, and 5.11f), both the spatial and
temporal extent of regions with reduced velocity decreased significantly. This means
that both the number of vehicles affected by the on-ramp induced breakdown and the
degree of affection decreased as well. With 30 % of all vehicles being equipped, the
peak hour induced perturbations nearly vanished and became tightly localized around
the on-ramp. Due to the merging process and the high vehicle flow, we do not expect
perturbations to disappear completely. To quantify the positive impact of IVC on traffic
flow, we recorded the travel time of each vehicle (see figure 5.11b). If no vehicle is able to
communicate, the travel time more than doubled for some vehicles from approximately
10 min in dilute traffic to more than 22 min. With penetration rates of 15 % and above,
it took no vehicle longer than 16 min to pass the same distance. With free flow at the
downstream boundary, the results suggest that rates of communicating vehicles of 30 %
and above practically restore free flow on the entire road except for a narrow region
around the on-ramp.

Thus, all results suggest that the proposed strategy is indeed able to reduce congestion
and vehicular communication is an appropriate mean to optimize traffic flow.

5.3.3.3 Dependence of the Results on the Choice of Parameters

Another important aspect is the sensitivity of our results and, consequently, of the
proposed strategy on the choice of newly introduced parameters. In section 5.3.1, the
variables T, and T; were introduced to define an area of relevance for traffic information.
Only vehicles within this spatiotemporal area change their driving behavior in response
to received messages. To check the sensitivity of our results on the choice of Ty and
T;, we modified the original values of Ts = 3 km and 7; = 30 s and analyzed travel
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Figure 5.11 Figure (a) shows the temporal evolution of the flow in our idealized peak
hour scenario. The resulting evolution of the single-vehicle travel times is given in
figure (b). (The maximum velocity was 108 km/h for cars and 81 km/h for trucks.
T, was set to 65km/h.)

Examples of the spatiotemporal vehicle dynamics for (¢) 0%, (d) 10%, (e) 20 %,
and (f) 30 % of communicating vehicles.
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times in the interval from 6:00 a.m. to 9:00 a.m., in which most fluctuations occur (see
figures 5.8 and 5.9, left column). As shown in figure 5.12, the qualitative behavior of
travel times is conserved when changing T and T} for +1/3 of their original value.
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Figure 5.12 Average travel times in the time from 6:00 a.m. to 9:00 a.m. for different
values of T and T;. The average travel time obtained with the original values of T
and T} serves as reference and is labeled “standard”.

Lee and Kim [90] made a similar observation when they studied the dissolution of
traffic jams after introducing additional local interactions between vehicles. For the
local interactions that they introduced, each vehicle evaluated the velocity of a single
downstream vehicle at distance d. They found their results to be independent of the
concrete choice of d over a broad range of values.

Although we made no suggestion how the proposed strategy can be put into practice,
we wanted to assess its success if some vehicles or drivers do not (or cannot) follow the
recommended change of driving behavior. For this purpose, we repeated the simulations
and made half of the communicating vehicles ignore any recommendation on the driving
behavior. However, these vehicles did correctly broadcast messages, as described earlier.
We compared the average travel times from these simulations to the previous simulation
runs. In figure 5.13, we plotted the average travel times obtained for different shares of
communicating vehicles. At each data point, we also show the average travel time that
we obtained when the share of communicating vehicles was only half as large but when
all of these vehicles were able to adapt their driving behavior.

Here, we found a very good agreement between the values for a given penetration
rate (e.g., 40 %) and the results obtained for half this penetration rate (e.g., 20 %) when
all communicating vehicles follow the recommendation to change the driving behavior.
Even the largest deviation found at a penetration rate of 20 % (corresponding to 10 %
with all vehicles changing their driving behavior) is below half of a standard deviation
(see figure 5.6). Hence, the success of our strategy depends crucially on the drivers’
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Figure 5.13 A comparison of the average travel times for various rates of communicating
vehicles where we distinguished two cases: (i) all communicating vehicles that should
change their driving behavior actually do change their driving behavior, and (ii)
only half of the vehicles that should do so adapt their driving behavior by setting
Jbool < true.

willingness (or capability) to follow the recommendation, whereas the benefit from
better connectivity was found to be negligible.

5.4 Conclusion

In this chapter, we have presented a method to reduce congestion and improve traffic
flow via vehicle-to-vehicle communication. Solely based on periodic beacon messages
and using only velocity and position as a source of traffic state estimation, the proposed
method makes minimal requirements regarding the technical implementation.

The impact of the proposed strategy was evaluated by simulations employing a
bidirectionally coupled simulator. The traffic simulator used empirical loop detector
data, which show a breakdown of traffic flow during the morning peak hour and which
the simulator is able to reproduce.

In contrast to several previous studies where route choice was altered in response
to an already existing jam, our approach becomes effective before a jam occurs. For
this purpose, our approach requires a traffic state analysis which does not only take
into account vehicle density; by evaluating vehicles’ position and velocity, vehicles are
able to decide when and where to change their driving behavior. The success of this
approach can be seen from figure 5.9; with a sufficient number of vehicles applying our
strategy, the original traffic breakdown, seen in both the empirical and the simulated
data, can no longer be observed at penetration rates of 20 % at the detectors’ positions
in figure 5.9.
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Simulations showed that even low penetration rates suffice to considerably improve
traffic flow. With only one in ten vehicles being able to communicate, the increase in
travel time sinks from 22 % to 12 % compared with the case without communication.
Only slight improvements were found for penetration rates of 30 % and above.

All of the aforementioned points suggest VANETSs are an adequate means to increase
traffic efficiency and to improve traffic state estimation.
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Knowledge in VANETs: a Random Walk Approach

A combinatorial problem of heterogeneous traffic flow with communicating and non-
communicating vehicles was the starting point for the analysis presented in this chapter.
As shown in the previous chapter, information exchange between vehicles is expected
to enhance traffic safety and traffic stability notably [19, 54, 63, 64, 90]. After market
introduction, however, only a small fraction of vehicles will be equipped with the
necessary communication devices. On the other hand, local sensors (e.g., radar or
lidar) enable vehicles to gather information about the preceding and succeeding vehicle.
Consequently, a communicating vehicle may not only broadcast information about itself
but also information about the vehicle driving behind or ahead. Hence, the number
of vehicles of which the position is known may be significantly higher than the actual
number of communicating vehicles alone. This additional information may be used to
improve traffic surveillance or traffic safety.

Not only for traffic related applications it is an interesting question how many
vehicles are on average known (i.e., either actively communicating or being detected by
a neighboring communicating one) for a given share of communicating vehicles on the
road.

To answer this question, we first generalize the problem by translating the sequence
of vehicles into a one-dimensional particle chain with two types of particles, to which
we will either refer as “active” or “passive”. The traffic flow example in mind also
explains our choice to speak of active and passive particles. When studying exclusion
processes [23], one would rather speak of occupied and empty sites and in the context
of zero range processes (e.g., [25]) of sites and particles, respectively.

For random configurations of active and passive particles we determine the average
number of passive particles neighboring an active one by mapping the system to a one-
dimensional (1D) discrete random walk. This mapping even allows for an interpretation
which is closer to physics. If one thinks of the different particle types as changes in
the height profile of a 1D surface by £1, then the fraction of passive particles next to
an active one corresponds to the surface’s extremal-point density (see figure 6.1b). In

This chapter is largely based on and taken from the author’s article [T75] (see page 114).
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general, such extremal-point densities allow to study the dynamics of non-equilibrium
surface fluctuations and have applications to an even broader range of research. For a
detailed discussion of the dynamics of rough surfaces, the density of local extrema, and
analytic solutions, we refer to the very comprehensive article [135] by Toroczkai et al.

For our example of heterogeneous traffic, we will examine the case where communi-
cating vehicles are equipped with front and rear sensors or with front sensors only. In
the picture of active and passive particles, this corresponds to the situation where a
passive particle can be detected by both its left and its right active neighbor or to the
situation where only an active particle to its left can detect it. It turns out that in the
latter case a mean field approximation reproduces the exact result. Before we proof
this, let us formulate the problem in a more formal way.

6.1 Model Description

To analyze the problem presented in the introduction, we start with a one-dimensional
lattice with N sites. Each lattice site contains either an active or a passive particle
(represented by e or o). Let the number of active (passive) particles be A (P) and
N = P+ A. Then it follows directly that the probability of a randomly selected site to
contain an active (passive) particle is p = A/N (1 —p = P/N).

Active particles are always assumed to be known. For a passive particle to be known
it has to neighbor an active one. Here we distinguish two cases:

1. Symmetric case: A passive particle is called known if at least one of its two
neighbors is active.

2. Asymmetric case: A passive particle is called known only if its left neighbor is
active.

The knowledge about the system (i.e., the particle chain) obviously depends on the
average number of known passive particles in a given configuration. Figure 6.1a depicts
a sample configuration with N/2 = A = P = 6. In this configuration all but one (three)
particle(s) are known in the symmetric (asymmetric) case, independent of the boundary
condition.

In general, the number of known particles does not only depend on the amount of
active particles but also on their distribution on the lattice. For instance, to have full
knowledge of the system (i.e., for all particles to be known) the minimum share of active
particles is p = 1/3 in the symmetric case (ceooeo) and p = 1/2 in the asymmetric
case (e0e@0).

At first sight, the usage of only two particle types, representing communicating and
non-communicating vehicles, appears as a rough approximation of real traffic flow as we
ignore the inter-vehicle distance. We admit that the introduction of additional empty
lattice sites would better reflect the actual situation on a real road or in traffic cellular
automata (e.g., [102]), as considered in section 6.3. But the approximation is justified
since the detection range of vehicle sensors of about 200 m is larger than the typical
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Figure 6.1 The presented model consists of a chain with two types of particles: active
ones and passive ones. (a) Active (passive) particles are represented by e (o). The
number of known particles comprises all active particles and all passive particles
next to an active one. In the sample configuration of (a) there are 11 particles out
of 12 known in the symmetric case and 9 out of 12 in the asymmetric case. (b) The
model can also be viewed as a 1D random walk where the different types of particles
correspond to steps in opposite directions. In this picture passive particles become
known (i.e., they are detected) whenever the direction of the walk is reversed. Hence,
the fraction of known passive particles is also related to the density of extremal
points of the corresponding random walk. Figure (c) illustrates the conversion
between the two representations.

space gap between two vehicles [81, 86]. Besides, the case where the inter-vehicle spacing
exceeds the sensors’ range is of little interest because in this case the contribution of
vehicular communication to traffic safety and efficiency will be marginal at best.

6.2 Determining the Fraction of Known Particles

In this section we determine the fraction of known particles k3°f as a function of the
total particle number N and the number of active particles A. The upper index in k'Y
specifies whether we consider open (o) or periodic (p) boundaries. The lower index
denotes the symmetric (s) or asymmetric (a) case.

As a passive particle becomes known when it is next to an active one, we have to
count all eo (and oe) sequences among all (11\4]) possible configurations in the asymmetric
(symmetric) case. We will start to derive an analytic solution for the symmetric case
for periodic and open boundary conditions. The extension to the asymmetric case is
straight forward from there. For the latter case it actually turns out that a simple
mean field approximation yields the exact result. The mean field approximation can be
represented by a single-valued function k, s(p) with p = A/N.

6.2.1 Analytic Solution of the Symmetric Case

It is helpful to interpret the occupied lattice as a one-dimensional random walk where
each active particle corresponds to a step to the left and each passive particle to a step
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to the right or vice versa. Figure 6.1b illustrates this analogy. In this picture passive
particles are discovered whenever the direction of the walk is reversed (i.e., when a
corner occurs). Care must be taken, however, when a passive particle neighbors two
active particles (e o e). In this case only one of the two corresponding corners stands for
a newly discovered particle.

Hence, the function k2(N, A) can be calculated by determining the number of paths
with R corners and weighing it by a factor proportional to R. Thereby, our model is
similar to a problem by Feynman and Hibbs [28]: to calculate the kernel of a relativistic
particle moving in 1+ 1 dimension, Feynman suggested summing over all possible paths
with A (P) steps to the left (right) and weighing each path with a factor depending on
the number of corners.

To count the configurations which have exactly R corners, we have to distinguish
four cases:

1. The first particle is active and the last one is passive (e--- o).

2. The first particle is passive and the last one is active (o---e).

3. Both the first particle and last particle are active (o - - - o).

4. Neither the first particle nor the last particle are active (o--- o).

In analogy to Jacobson and Schulman, who presented a solution [46] to Feynman’s
problem, we introduce the function ®,,(R). The function returns the number of
configurations/paths with R corners where the first particle is of type = and the last
one is of type y. For = e and y = o one obtains [46]:

uo(R) = <%£g_—11)> (%5%_—11)> "

with odd R and 0 < R —1 < 2min(A — 1, P — 1). Due to the problem’s symmetry it
immediately follows ®eo(R) = Poe(R).

For ®..(R) we obtain:
P—-1 A—-1
i = () () o

for even R and 2 < R < min(2A4 — 2,2P) from which follows

wan- ()5

with R even and 2 < R < min(2P — 2,24).
To count passive particles in a e o e configuration only once, one of the corresponding
corners must be skipped. With periodic boundaries the probability pece(NV, A) for such
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a configuration to occur on a lattice with IV sites and A active particles is (see, e.g.,
[116])

Peoce(N, A) = N—:Q. (6.4)

()

Then it directly follows that the average fraction of known particles k2 as a function
of N and A is:

For convenience, we introduce

k2(N, A) Z > Oyy(R) x <R+A— Rp.o.(N—l—l A)) (6.5)
R z,yc{o,e}

where we assumed the ®,,(R) to return zero if R is not in the set of valid values as
specified in equations (6.1)—(6.3). The 1/n-term normalizes the probability such that
k(N,N) = 1. The +1-term in the first argument of pece (-, -) is a consequence of the open
boundary conditions. As with open boundaries the leftmost and rightmost particles
have only one neighboring site, the probability for a e o @ sequence to occur is identical
to the one on a periodic lattice with N + 1 sites where the additional site is occupied
by a passive particle. By using the normalization ) p Zx,yE{O,O} P, y(R) = (]X), we can
rewrite equation (6.5) as

KO(N, A) = % + (1 - 1‘4_1) ST Y Rx@u(R). (6.6)
R z,yc{o,e}

The sums in equation (6.6) can be converted to hypergeometric series (see ap-
pendix A) and turn out to be particular cases of Gauss’s hypergeometric theorem.
Thereby, the previous formula can be reduced to a simple rational function depending
only on the total number of particles and the number of active particles:

A(A2+ A—-3NA+3N?—-2N)

K (N, 4) = NZ(N —1)

(6.7)

The extension to periodic boundaries is straight forward. When closing the chain to
form a ring, one additional corner originates for all ®4,(R) and ®.e(R) configurations.
In this case one has to replace R — R + 1 for the weighing factor in round brackets in
equation (6.5) and e o e sequences need no special treatment which leads to

A(A?+3A—3AN +3N%+2—-6N)
N(N —1)(N —2)

RP(N, A) = (6.8)

Finally, let us compare the error of a simple mean field approximation with the exact
result. One obtains the mean field approximation by noting that the only configuration
in which a passive particle remains unknown is when both its neighbors are passive
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particles as well. The probability for this configuration is (1 — p)3. In all other cases,
i.e., (1 — (1 —p)?), a passive particle is known, which yields

ks(p) = ks (A/N) = p* + 3p(1 - p) (6.9)

The larger is the system (i.e., the number of lattice sites N), the better is the agreement
between equation (6.7)/(6.8) and (6.9). For, in the thermodynamic limit N — oo and
p = const. (i.e., N ~ (N —1) and A?/N7 — 0 for 0 <i < j and A < N), the mean field
approximation converges to k(N, A) as k(N, A) = k(p) + O(N~1).

6.2.2 Analytic Solution of the Asymmetric Case

In the asymmetric case a passive particles becomes known only if its left neighbor is
active. (We restrict the discussion to this case, although the results are also valid if a
passive particle requires an active particle to its right in order to be known.)

With a similar reasoning as in the previous section, one can derive the fraction of
known particles as a function of the lattice size N and the number of active particles
A. In general, every second corner in the corresponding random walk stands for a
known passive particle. Care must be taken for the ®,,(R) configurations with x # y:
these configurations have an odd number of corners. Moreover, there is at least one
known passive particle for each ®4.(R) configuration which is not guaranteed for ®.e(R)
configurations. This leads to

1 R R+1
EJ(N,A) = — DPee(R) + Poo(R)) | =+ A ) + Peo(R) [ —— + A
(Vo) = S (@un) + 02al) (5 44) + @ucl) (757 44)
+®ou(R) <R2_1 + A)] . (6.10)
Evaluating the sums gives
ka(N, A) = k3(p) = p(2 — p) (6.11)

for open boundaries. This is exactly the same result that a mean field approximation
yields, as one can easily verify: in the asymmetric case, the only configuration in which
a passive particle remains unknown is the one in which the particle to its left is passive
(00). The probability for this sequence is (1 — p)? and, consequently,

ks(p) =1 (1 —p)* =p(2 —p). (6.12)
A similar calculation for periodic boundary conditions yields:

A@RN —A-1)
N(N-1)

kP(N,A) = (6.13)
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6.2.3 The Asymmetric Case and the Density of Local Maxima

We would like to discuss briefly the relation between the fraction of known passive
particles and the density of local maxima in the random walker’s path, which we have
already mentioned in the introductory section. For the microscopic characterization of
a rough surface, its extremal-point density may be of similar importance as is the width
of the surface for its macroscopic characterization [135].

Comparing figures 6.1a and 6.1b shows: each eo configuration in figure 6.1a results
in a local maximum in figure 6.1b. Hence, we obtain the average density of local maxima

Ponax Dy setting A = 0 on the right-hand side of equation (6.10):
o AN — A
(. ) = AEZA 1) (6.14)

As we average over all configurations, the density of local maxima and minima is identical
(P2 ax = P2in). An analogous calculation for periodic boundary conditions yields

AN — A)

P (NA) =pP. (N,A) = L.
pmax( ? ) pmln( ) ) N(N _ 1)

(6.15)

(Note that the interpretation of periodic boundary conditions for the random walker’s
path is somewhat difficult as the two ends of the 1D surface have different heights if
A#P)

6.3 Simulations for Vehicular Networks

Finally, we validated our theoretical predictions with simulations of a vehicular com-
munication network on a circular one-lane road of radius 1.5km. Each communicating
vehicle was assumed to send periodic status messages with a frequency of 4 Hz. (The
full set of parameters was taken from table 5.1.) These messages comprised the vehicle’s
position and velocity as well as the position and the velocity of the preceding (and
following) vehicle(s) in the asymmetric (symmetric) case. For realistic communication
modeling we used the probabilistic Nakagami-m model (section 5.1.1.3). Vehicle motion
was simulated using the CDM again. The road was initialized with densities ranging
from 5% up to 65 %. Higher densities were omitted because at a density of 65 % the
average bumper-to-bumper distance already is below 4.1 m and a large traffic jam spans
the entire road. Thus, from a practical point of view it is not necessary to know the
position and velocity of each vehicle to estimate the traffic dynamics at such high vehicle
densities. For our analysis we initialized the road homogeneously (i.e., vehicles were
positioned at the same distance from each other) and recorded the communication
statistics of a 60s interval after a relaxation time of 240s. We averaged over at least
five independent runs for each density.

To assess the validity of the theoretical calculations for real-world applications,
we compared the simulations’ results to the corresponding mean field approximation.
Here we distinguished between global and local knowledge. Global knowledge is the
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aggregated information from all communicating vehicles at a given time. A central
node or sever to which all vehicles send the available information might possess such
global knowledge. Analogously, we refer to the knowledge of a single vehicle as local
knowledge.

In figure 6.2a the percentage of known vehicles is shown for the entire system (i.e.,
the global knowledge). The functional relations (6.9) and (6.11) serve as references.
The good agreement is not surprising as we assumed each vehicle is able to successfully
transmit its knowledge to a central node.

A realistic treatment of communication between vehicles, however, is likely to
deteriorate these results for two reasons. The communication range is limited, and, in
the case of simultaneous transmissions, closer senders are preferred due to a stronger
signal strength at the receiver. Hence, the fraction of known particles will decrease the
larger is the distance between two vehicles. Figures 6.2b and 6.2c show a comparison
between the average knowledge of single vehicles and the predictions by equations
(6.9) and (6.11). We divided neighboring vehicles in different categories containing all
vehicles closer than 100 m, 200 m,. .., 500m, and 1000 m, respectively. For each range
we determined the average knowledge a communicating vehicle had in the symmetric
(figure 6.2b) as well as in the asymmetric case (figure 6.2c). Even if all vehicles were
communicating, the fraction of known vehicles stayed below 93 %, which results from
the limited communication range and package collisions.

For low rates of communicating vehicles, the number of known vehicles was above
the analytic prediction though. To understand this behavior, see figure 6.2d where
we averaged only over a fixed vehicle density of p = 9% (symmetric case). At low
densities, there are only few vehicles within the neighborhood of communicating vehicles.
From these vehicles, however, we assumed that the vehicle’s sensors always detect the
immediate predecessor and successor. Consequently, at low densities, where these two
vehicles make up a large part of the neighboring vehicles, the fraction of known vehicles
is large as well. This relatively large fraction at low vehicle densities increases the
overall fraction of known vehicles when averaging over the entire density range, as seen
in figure 6.2b.

6.4 Discussion

In this chapter we developed a model of a one-dimensional system with two types
of particles, namely active and passive particles. By mapping the model to a one-
dimensional random walk, we could derive formulas to determine the fraction of known
particles within the system depending on the system size N and the number of active
particles A. As expected, the functions are strictly increasing for A — N. For low
fractions of active particles (i.e., p = A/N < 1) the dominating term in equations
(6.7) and (6.8) is 3A/N for the symmetric case. This, in turn, means that each active
particles discovers approximately two passive particles. For p = 0.1 and N — oo the
number of discovered passive particles per active particle is slightly above 1.7 as can be
obtained from equation (6.9). Similarly, with an asymmetry in particle discovery the
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Figure 6.2 (a) Under the assumption that all communicating vehicles (with an overall
share of p) successfully transmit their knowledge to a central instance, this aggregated
information is very well described by the functions k,(p) (dashed line) and ks(p)
(solid line) derived in sections 6.2.1 and 6.2.2. The simulation results were averaged
over various vehicle densities in the range 5% < p < 65 %. The average fraction of
known vehicles from a single vehicle’s perspective is given both for (b) the symmetric
and (c) the asymmetric case. At small densities, the average knowledge may be
above the theoretical prediction. This follows from the fact that there are only few
vehicles in the neighborhood of a communicating one and that the immediate leader
and follower are always assumed to be known. This can be seen from figure (d)
which shows the fraction of known vehicles for a fixed density of p =9 %.
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term 2A/N contributes most to the sums in equations (6.11) and (6.13) for A < N. In
the latter case we could also show that a simple mean field approximation is exact for
open boundaries. In all cases mean field approximations are in good agreement with
the exact result for large N (N > 100) as the error decreases with N ~!. Furthermore,
in systems with open boundaries, the knowledge is lower than in systems with periodic
boundaries as the active particles occupying the boundaries have only one neighbor to
discover instead of two.

The comparison between the analytic results and our simulations of a vehicular
communication network, which motivated our analysis, showed that realistic communi-
cation modeling decreases the fraction of known vehicles compared with the theoretical
prediction. The analytic solution still can serve as an upper bound in most situations.



Conclusions and Outlook

Vehicular traffic is not only an important example of transport processes. It is essential
for modern, dynamic national economies, but it also causes severe problems (e.g., air
pollution, congestion, accidents).

A first step to ease or to solve these problems is to understand traffic. Mathematical
and computer models may contribute to a deeper understanding of traffic. For this
purpose, it is, however, necessary that such models reproduce the empirical findings
satisfyingly.

In this spirit, we studied the spatiotemporal dynamics of three distinct microscopic
traffic models with a clear focus on the comfortable driving model (CDM). In chapter 4,
we analyzed the spatiotemporal dynamics of the CDM with respect to the observed traffic
phases and the transitions between these phases. We felt such an analysis was necessary
as many newly presented traffic models claim to reproduce the synchronized phase of
Kerner’s three-phase traffic theory simply by looking at space-time—velocity plots (e.g.,
[48, 127]). Hence, we used the rule-based FOTO-method, which still has some limitations
in assessing the spatiotemporal dynamics as it is based on local measurements. Yet it
provides hard and objective criteria for this purpose. By applying the FOTO-method,
we found that the obtained results are in both quantitative and qualitative agreement
with the three-phase traffic theory. Notwithstanding this agreement, we do not say that
the CDM reproduces the synchronized phase, but we say that we found three clearly
distinguishable states or “phases”.

The comparison with empirical data showed that all investigated models could
reproduce a traffic breakdown observed in real-world measurements. Taking into
account the large number of vehicles involved, this is a very fascinating result! Despite
their short-ranged interaction, which is limited to one or two vehicles ahead, these
models succeed in reproducing the macroscopic features of traffic flow involving a much
larger number of vehicles.

Yet we have to ask critically whether we do not oversimplify things. All models
that we investigated in chapter 3 and most current microscopic models treat vehicles
as elementary building blocks of the complex system “traffic”. But the building block
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“vehicle” can be further subdivided into the vehicle with its well-known mechanical
restrictions (e.g., braking capacity, limited acceleration rate) and the vehicle’s driver
who may show different attitudes (e.g., timid, cautious, aggressive, or selfish) [13].
Although some of these aspect have already been incorporated in traffic models (e.g.,
optimistic versus pessimistic driving behavior in [91] or polite versus impolite, when
changing lanes [71]), these attitudes are not really a characteristic of the individual
driver but are assigned in response to external factors. Does this level of detail suffice?

The good agreement found in chapters 3 and 4 might suggest to answer this question
with “yes” as the single-driver effects seem to average out. Indeed, with respect to
the modeling of traffic flow, this attitude is justifiable. Studies comparing the car-
following behavior of only a few vehicles with simulated data, however, found that,
even after calibrating the microscopic traffic models, it is not possible to suppress clear
deviations between the empirical and simulated data due to differences in the drivers’
behavior [17, 70, 118]. With respect to these results, we want to refer to a very recent
article presenting a traffic model that treats “driver-vehicles subsystems as a living,
hence complex, system” [13]. For a more general overview of the challenges in the
modeling of traffic flow and crowd movements, where the “human factor” plays an even
more important role, see the recent review article [12].

Notwithstanding the limitations just mentioned, the microscopic modeling approach
is very well suited to describe traffic flow. Probably its biggest advantage is the
fine-grained analysis it offers: starting from a single-vehicle basis, it allows to study
which interactions on the single-vehicle level lead to macroscopic effects. Moreover,
it enables us to modify the motion of selected vehicles as desired. We did this, for
example, in chapter 5, where we studied the influence of vehicular communication. For
communicating vehicles, a subset of all vehicles, we slightly modified the rules of motion
and measured the resulting impact on traffic flow. We saw that few vehicles (~ 10 %)
behaving differently can improve traffic flow a lot.

The heterogeneity of traffic flow was also subject of the previous chapter 6. On a
rather abstract level we saw similarities between a sequence of vehicles, a 1D surface,
and a 1D random walk. The obtained formulas for knowledge in heterogeneous traffic
were derived under some simplified assumptions (e.g., unlimited sensor range). Yet we
could show that the fraction of known vehicles is considerably higher than the fraction
of sensor-equipped vehicles in heterogeneous traffic.



Hypergeometric Series

In chapter 6 we have encountered sums of the form

" n s )
Zk<k> (t—l—k) with n,s,t € N (A.1)

k=0

to determine the fraction of known particles (see, e.g., equation (6.6)). We will show how
such expressions, which involve binomial coefficients and factorials, can be simplified by
identifying them as hypergeometric series.

In general, a power series
Z cpa® (A.2)
k>0
is called hypergeometric if ¢g = 1 and if the ratio of successive coefficients is a rational

function of &, i.e.,

1 _ Dk) (A3)

e Qk)
with polynomials P and @ in k. (The requirement ¢y = 1 is not very rigid: provided
that cg # 0, we can always achieve cg = 1 by factoring out the leading term, as we will
show.)

When working with hypergeometric series, it is often more convenient to convert
the series into hypergeometric notation ,Fy [84]:

L > ergh — o0 (al)k'(QQ)k"'(ap)k xk
m} '_g ’ _é(bl)k-(bz)k---(bq)k.k! (A4)

al,ag,...,ap
F|:
r+q
b1,ba2, ..., by

where we introduced the Pochhammer symbol

(a)p :=ala+1)(a+2) - (a+k—1). (A.5)
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By comparing the ratio of two successive terms of ,F,, we find

Ck-i—lxk—H . (k+a1)(k+a2)"'(k+ap) o (A 6)
cxrk (kb)) (k+b2) - (k+by)(k+1)" ’

From this representation, it directly follows how to convert a hypergeometric series
to hypergeometric notation: after calculating cx11/cx and factorizing the numerator
and the denominator in terms of k, we can immediately read off the upper parameters
ai,az,...,ap as well as the lower parameters by, ba, ..., by.

Before evaluating equation (A.1), let us first consider the simpler sum

S ()= ()5 0(20)/() wmmeeen wn

In the last step we have factored out the term (f) so that the sum is a valid hypergeometric

series with ¢ = 1 and « = 1. Yet the factorization does not change ratio of successive
coefficients. Calculating ciy1/cy yields

Ck+1 (kil) (t+l§+1) (k—mn)(k—s+1)

= = . (A.8)
Cl (1) (ie) (k+1)(k+t+1)
A comparison with equation (A.6) immediately leads to
" In S S —n,t— s
= F! ’ 1. A.
%(k;)(Hk) <t>x2 1[ t+1 ] (A4.9)

Let us now consider equation (A.1). Obviously, due to ¢y = 0, it is not a valid
hypergeometric series, and the quotient cgyi1/ci is not defined for £ = 0. We can,
however, apply the same steps as before if we shift the summation index by one and
consider

nilk . n s B s ity S n s s
,;)( O e \erm1) =0 QT k+1)\t+k+1 tr1)

Again, we calculate the ratio cg11/ck for the previous sum, which gives

Ck+1 _ (k + 2) (kiz) (t+l§+2) _ (k —n+ 1)(k —s+t+ 1)_ (A.lO)

& (k+1)(10) Gangr) (k+1)(k+2+1)

Finally, we obtain

n n s S —n+1.t—s+1
Sk - r ’ 1] All
P <k><t+k> n<t+1>x2 1[ t42 ‘ ] (A-11)

Using the identities (A.9) and (A.11), we are now able to simplify both series by applying
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Gauss’s (hypergeometric) theorem, which we give here without proof [5, pp. 2-3]:

a,b _ I(e)l'(c—a—0b) i Re(c — a—
2F1|:C ‘1]_F(c—a)F(c—b) fR( b>>0 <A12)

Hence, equation (A.1) reduces to a simple rational function of s, ¢, and n:

Sl f ) = (n+s—1)!
zgk(’f) (Hff) Tt Dt (A.13)

where we used that for a positive integer m € N the Gamma function I'(m + 1) reduces
to a simple factorial (i.e., I'(m 4 1) = ml!).

This knowledge can now be applied to evaluate the sums of chapter 6. Equation (6.6),
for example, contains the sum

> Y Rx g (R). (A.14)

R z,ye{o,e}
We now take x = y = o, and we remind that
A-1 P—-1
(I)oo R) = A.15
m= () (%) (19

with R even and 2 < R < min(2P —2,24), i.e.,, 1 < R/2 <min(P—1, A). Consequently,
for x = y = o, equation (A.14) reduces to

min(P—1,A)
A—-1\[(P—-1
> 2k<k 1)( L > (A.16)
k=0 N

which can be rewritten with equation (A.13) as

mn A A1\ (P-1 (P+A-3)
,;1 2k<k—1>< k )Z(P_l)(A—l)!(P—Q)! (A-17)

in either case (i.e., P—1<Aand P—1> A). With a similar reasoning the remaining
terms of equation (A.14) can be evaluated, altogether leading to:

S Y Rx by (R) = (]23(1_3 B!‘? A__l)ll)!. (A.18)

R x?ye{o7.}
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The FOTO-method

For the sake of completeness, we review the FOTO-method, which was developed by
Kerner and colleagues [58, 69] and which we used in chapter 4. The method allows a
classification of locally measured traffic data according to the three-phase traffic theory.
The classification is based on a set of rules. It uses the aggregated data provided by a
local detector (i.e., velocity and flow) and decides to which traffic state the measured
combination of observables most likely belongs. As the traffic phases S and J both
denote phases of congested traffic, the distinction is not always obvious. Therefore, the
set of rules employs a fuzzification of the input parameters as shown in figure B.1.

= : = b low medium
= 1E < 1F
= r = o
ié 0.8 }é 08F o\ /o N\
S 06f g 06p
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g B 8 C N
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Figure B.1 Illustration of the fuzzification process. For each value of (a) flow and (b)
velocity one can read off the associated degree of membership to the classes “low”,
“high”, and, in the case of the velocity, “medium”. The dashed lines in (b) illustrate
that one value (75km/h) can be member of more than one class.

The fuzzification process transforms the measured value into fuzzy values which
denote the degree of membership to the given classes. Hence, one value may belong to
more than one class. This is illustrated in figure B.1b, where fuzzificating the velocity of
75 km /h shows that this velocity is both a “medium” and a “high” velocity. Yet the degree
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of membership to the class “high” is larger (0.75) than to the class “medium” (0.25).
Based on this fuzzification of flow and velocity, the classification of traffic states via
the FOTO-method works as follows [56, 69]:

F1 If the measured average velocity is classified as “high”, then the associated traffic
phase is free flow (F)—independent of the flow rate’s value.

F2 If the measured average velocity is a member of the class “medium”, the associated
traffic phase corresponds to synchronized traffic (S).

F3 If the measured average velocity is “low” but the flow is “high”, the associated
traffic phase is synchronized traffic (S).

F4 If both the measured average velocity and the flow are “low”, the associated traffic
phase should be classified as a wide moving jam (J).

Due to non-exclusive memberships, a pair of flow and average velocity may match more
than one of the above criteria. In this case, one has to chose the traffic state with the
highest degree of membership of both velocity and flow. To illustrate this classification,
table B.1 gives several examples of how the FOTO-method works.

Table B.1 Examples of how the FOTO-method processes the input variables velocity
and flow. For both observables the degree of membership to the classes “low”, “high”,
and, for the velocity, also to the class “medium” is determined. Then, the agreement
with the criteria F1-F4 is checked. The largest value for F1-F4 determines the
choice of the traffic phase (gray-shaded cells). To distinguish the criteria F2 and F3,
the table contains two separate columns labeled Sy and S3, which refer to F2 and
F3, respectively.

velocity flow traffic phase
(v) (J) low medium high  low high J So S3 F
80 1260 0 0 1 0 1 0 0 0 1
71 1290 0 045 055 0 1 0 045 0 0.55
27 900 0.65 035 O 0.375 0.625 0.375 0.35 0.625 O
66 1230 0 0.7 0.3 0 1 0 0.7 0 0.3
43 1050 0 1 0 0.1875  0.8125 0 1 0 0
13 540 1 0 0 0.825 0.175 0.825 0 0.175 0
25 630 0.75 025 0 0.7125  0.2875 0.7125 0.25  0.2875 0

The agreement with criteria F3 and F4, which requires evaluating flow and velocity
simultaneously, is checked in a two-step process. First, for both the average velocity and
the average flow the corresponding degrees of membership are determined. Then, the
minimum degree of membership of either of the two variables determines the extent to
which the criterion is met. This can, for example, be seen from the last row of table B.1:
the criterion F4 requires both velocity and flow to be “low”. The degree of membership
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to the class “low” is 0.75 for the velocity but only 0.7125 for the flow. Consequently, the
degree of matching the criterion F4 is min(0.75,0.7125) = 0.7125. Finally, the traffic
phase for which the best matching was observed is chosen.

Kerner et al. [69] also presented an extended version of the FOTO-method comprising
13 different rules instead of the four F1-F4. As the extended rule set provides for a
better discrimination between synchronized flow and wide moving jams only in very
rare situations and as the mechanism is not different to the one presented here, we refer
to the corresponding sections in [69] or [56].
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CDM with Extensions for VANETs

Although the CDM has already been presented in section 3.1.3, we provide here a
full review of the CDM that includes the extensions for traffic flow optimization via
vehicular communication (see sections 5.3.1 and 5.3.2). According to these extensions,
communicating vehicles are to keep a larger gap when they are notified about a critical
road segment (i.e., if jhool = 1 = true). The additional gap is denoted as g,(t). By
setting g, (¢) = 0 below, the original rules of motion of the CDM are restored.

Remember that the CDM is a traffic cellular automaton where space is discretized
in units of 1.5 m and time in intervals of 1s. The position and the velocity of a vehicle
labeled as n are given by x,(t) and v,(t), respectively (see figure 3.2). Vehicles are
labeled downstream in ascending order such that the vehicle in front of n is labeled n+ 1.
For convenience, the additional variables d,,(¢) and ¢}, (t) = d,(t)/v,(t) are introduced
to denote the spatial and temporal headway between the vehicles n and n 4+ 1. The
model includes anticipatory effects by considering the status of the preceding vehicle’s
brake light b,,+1(t), by anticipating its velocity vanti(t) = min (vy41(t), dp41(t)), and by
calculating an effective distance d<f(¢) as

dT(t) = dp,(t) + max(Vanti (t) — dsage, 0)

where dg,f governs the effectiveness of the anticipation (usually dgafe = 7).

The rules of motion in our modified model read as follows (the temporal discretization
of 1s allows to treat all magnitudes as dimensionless because conversions do not change
a variable’s numerical value):

1. Acceleration:

min(v™™ v, () + 1), if bp(t) = bup1(t) = 0 or ty(t) > ty(t),

n(t+1
vt +1) < { vn(t), otherwise. (C.1)



100

C. CDM with Extensions for VANETs

2. Adaptation of g,:

v(t), ot + 1) > () — gn(t))
vp(t+1) and g, () > 0 and v, (t + 1) > v, (t),
vp(t +1), otherwise.

gn(t+1) < and gy (t) > 0,
gn(t) otherwise.

. Braking:

un(t+1) = min (d5f(£) = ga(t +1),0a(t + 1))
bu(t+1) 10 (vn(t+1) — v (t))

. Determination of randomization parameter p:

max(df(t) — v, (t +1),0), if v, (t+ 1) > (dF(t) — gn(t))

(C.2)

(C.3)

(C.5)

Db, if bn—i-l(t) =1and th(t) <ts (t) and gn(t + 1) < Un(t)treaction:
Pes if bn+1(t) =1 and th(t) < g (t) and gn(t + 1) > Un(t)treactiona

p <
Do, if v, (t) =0,
Pd, otherwise.
. Dawdling;:
t+1)—1,0), if&<p,
Un(t+1) «— maX(Un( + ) ) 1 g p
v (t+ 1), otherwise.
1, if £ < d p = ps,
bp(t+1) < if&<pandp=py
bn(t+ 1), otherwise.

. Reaction to warning message:

min(7lear, dn(t) — vp™),  if jhooln(t) = 1 and d,(t) >
gn(t + 1) — gn(t + 1), if jbool,n(t) =1 and dn(t) <
0, if jbool,n(t) =0.

. Vehicle motion:

Tp(t+1) < zp(t) +vp(t+ 1)

(%

(C.6)

max
Uy

max
n

(C.9)

(C.10)

In the first step, a vehicle tries to accelerate to its maximum velocity. To avoid

unnecessary acceleration, it checks the status of its own and the preceding vehicle’s
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brake light and compares its time headway t,(¢) with a velocity-dependent interaction
horizon t4(t) = min(v,(t), h).

In the next step, the vehicle’s velocity and the additional gap g, (t) are adapted to
avoid braking. If maintaining the current value of g, (t) requires braking (first case in
equation (C.2)), any acceleration of the previous step is undone. Then, the new value
of g, is calculated so that the vehicle does not have to brake or, if this is not possible,
so that the deceleration is minimized.

Afterwards, the vehicle checks the safety constraints and brakes, if necessary. Subse-
quently, it updates the status of its brake light.

Then, the determination of the randomization parameter p follows (see section 5.3.2).
The function ©(-) denotes the Heaviside step function. If a (pseudo-)random number &,
uniformly generated in [0, 1], is smaller than the randomization parameter p, the velocity
is reduced by one unit. The last two steps, where the new value of g, is calculated
(step 6) and the vehicle moves (step 7), are interchangeable. The length of g, is limited
to a multiple of a passenger car’s length [.,; to avoid unrealistically large gaps in dense
traffic.
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Abstract

Traffic flow is a very prominent example of a driven non-equilibrium system,
which shows a very complex spatiotemporal dynamics. A characteristic
phenomenon of traffic dynamics is the spontaneous and abrupt drop of the
average velocity on a stretch of road leading to congestion.

To assess the quality of three selected microscopic traffic models (the Nagel-
Schreckberg model (NSM), the intelligent driver model (IDM), and the
comfortable driving model (CDM)), we study their ability to reproduce such
a traffic breakdown, whose spatiotemporal dynamics we investigate as well.
Our analysis is based on empirical traffic data from stationary loop detectors
showing a spontaneous breakdown on a German Autobahn. We then present
several methods to assess the results and to compare the models with each
other. In addition, we will also discuss some important modeling aspects
and their impact on the resulting spatiotemporal pattern.

For the CDM, which gave good results in this assessment, we analyze the
spatiotemporal patterns resulting from different inflow and outflow rates
with open boundary conditions. Based on time series of local measurements,
the local traffic states are assigned to different traffic phases according
to Kerner’s three-phase traffic theory. For this classification we use the
rule-based FOTO-method, which was developed by Kerner et al. [69]. Our
analysis shows that the model is indeed able to reproduce three qualitatively
different traffic phases: free flow, synchronized traffic, and wide moving jams.
This is surprising because traffic models with a fundamental diagram, such
as the CDM, are not expected to reproduce the synchronized phase.

By virtue of this overall good agreement with empirical findings, we chose
the CDM to investigate via computer simulations how traffic congestion
can be reduced with the help of vehicle-to-vehicle communication. As the
reasons for a traffic breakdown are perturbations caused by human drivers
in dense traffic, we propose using periodically emitted status messages to
analyze traffic flow and to warn other drivers of a possible traffic breakdown.
Drivers who receive such a warning are told to keep a larger gap to their
predecessor. By doing so, they are less likely the source of perturbations,
which can cause a traffic breakdown. We show that penetration rates of
10 % and less can have significant influence on traffic flow and travel times.

Finally, we address a rather practical problem of heterogeneous traffic con-
sisting of communicating and non-communicating vehicles. If communicating
vehicles can detect the vehicle ahead (and behind) by front (and rear) sensors,
we give exact solutions for the average number of detected vehicles.



Zusammenfassung

Die Dynamik des Verkehrsflusses zeigt unterschiedliche, komplexe rdumliche
und zeitliche Muster. Ein bekanntes Phédnomen ist beispielsweise der ab-
rupte und plotzliche Abfall der Durchschnittsgeschwindigkeit auf einem
Streckenabschnitt, der zu Stauungen fiihrt.

Zur Beurteilung der Qualitiat dreier ausgewéhlter Verkehrsmodelle (dem
Nagel-Schreckberg Modell (NSM), dem Intelligent Driver Model (IDM) und
dem Comfortable Driving Model (CDM)) wird deren Féhigkeit einen solchen
Zusammenbruch des Verkehrsflussses zu reproduzieren untersucht. Fiir eine
moglichst realistische Untersuchung werden dazu reale Zahlschleifendaten
herangezogen, die eben einen solchen Zusammenbruch zeigen. Es werden
mehrere Methoden vorgestellt, mit denen die Ubereinstimmung der empiri-
schen mit den Simulationsdaten beurteilt werden kann. Zusétzlich wird der
Einfluss einiger Modellierungsaspekte auf die Ergebnisse diskutiert.

Fir das CDM, welches eine gute Ubereinstimmung mit den Echtdaten
zeigte, werden in einem zweiten Schritt die raum-zeitlichen Verkehrsmuster
untersucht, die sich aus unterschiedlichen Ein- und Ausflussraten bei offenen
Réndern ergeben. Auf Grundlage der Zeitreihen lokaler Messungen werden
dann die Verkehrszusténde den Verkehrsphasen der Kernerschen Drei-Phasen-
Verkehrstheorie zugeordnet. Fiir diese Zuordnung wird die regelbasierte
FOTO-Methode verwendet [69]. Auch diese Analyse zeigt, dass das CDM alle
drei unterschiedlichen Verkehrsphasen (Freifluss, synchronisierter Verkehr
und Stau) reproduzieren kann. Diese Beobachtung ist iiberraschend, da diese
Eigenschaft von Verkehrsmodellen mit einem Fundamentaldiagramm wie
dem CDM nicht erwartet wird.

Aufgrund dieser insgesamt guten Ubereinstimmung mit empirischen Daten
wurde das CDM auch fiir simulative Untersuchungen von Strategien zur Ver-
kehrsflussoptimierung mittels Fahrzeug-Fahrzeug Kommunikation verwendet.
Da der Zusammenbruch des Verkehrsflusses aus von Fahrern verursachten
Storungen resultiert, wird vorgeschlagen die Verkehrslage durch regelméafig
gesendete Kurznachrichten zu analysieren und Fahrer vor einem drohenden
Zusammenbruch des Verkehrs zu warnen. Fahrer, die eine solche Warnung
erhalten, halten daraufhin einen gréfieren Abstand zum Vordermann ein und
verursachen dadurch mit geringerer Wahrscheinlichkeit Fluktuationen, die
den Verkehr zusammenbrechen lassen. Es zeigt sich, dass schon Durchdrin-
gungsraten von 10 % kommunizierender Fahrzeuge einen deutlich messbaren
Einfluss auf den gesamten Verkehrsfluss haben.

Schliefllich betrachten wir heterogenen Verkehr, bestehend aus kommunizie-
renden und nicht-kommunizierenden Fahrzeugen, genauer. Unter der Ann-
hame, dass kommunizierende Fahrzeuge ihren Vorder- und Hintermann mit
Hilfe von Sensoren orten kénnen, fragen wir, wie viele nicht-kommunizierende
Fahrzeuge so im Durchschnitt geortet werden.
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