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1 Introduction

In 1992, Nagel and Schreckenberg [1] proposed one of the first stochastic
cellular automaton (CA) models for analyzing traffic on a one-lane road.
Various modifications and extensions such as for the analysis of city traffic or
the application to complex road networks have been proposed since then (for
reviews see, e.g., [2, 3]). The primary criterion to assess these models is their
ability to reproduce empirically observed features of traffic flow [4, 5], which
follows from the vehicles’ rules of motion.

In the Nagel-Schreckenberg model (NaSch), the road is modeled as a one-
dimensional array of sites and each site is occupied by at most one vehicle.
The position of the ith car at time t is denoted by xit and the position of its
immediate predecessor by xi+1

t . The vehicle’s dynamics (i.e., its acceleration
and its deceleration) depends on its predecessor on the road. This behaviour
is implemented by an update scheme in which the following simple rules are
applied to each vehicle in parallel:

1. A car i with speed vit at time t accelerates if the distance to its predecessor
δit = xi+1

t − xit is large enough. That means if δit is larger than vit + 1
then the speed is advanced by one until the car’s maximum speed vmax is
reached: vit+1 = min(vit + 1, vmax).

2. If the distance δit is too small (i.e., δit ≤ vit+1), the car reduces its speed to
avoid a collision: vit+1 = min(δit − 1, vit+1).

3. The car’s speed is decreased by one at random: vt+1 = max(0, vit+1 − 1)
with probability 1− pacc.

4. Finally, the vehicle moves from its current position xit to its new position
xit+1 = xit + vit+1.
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Note that a car accelerates by one at maximum (step 1), but it can slow down
by more than one (step 2). Step 3 mimics speed fluctuations due to human
behaviour. It is essential for traffic jams to occur. Nagel and Schreckenberg
focused their analysis on the relationship between the density ρ (the number
of cars N divided by the length of the road L) and the traffic flow J (the
average number of cars which pass a site per time step). They conclude that
the traffic flow increases rapidly up to a certain density above which the
average traffic flow decreases as the probability of traffic jams increases rapidly.
Despite its simplicity, the model is able to reproduce empirically observed
traffic phenomena such as the spontaneous formation of traffic jams. A major
drawback of the model is that it allows for unrealistically high deceleration
rates (step 2).

With our modification of the NaSch we will present a minimalistic discrete
CA model with limited braking capabilities for simulating traffic flow on a
single lane. We will also show that this modified model (in the following:
mNaSch), unlike the Nagel-Schreckenberg model, tends to converge to steady
states. First, let us introduce the modified model.

2 Modified version of the NaSch

Let L ∈ N be the number of sites representing the one-lane road. At time
t, the car labeled i moves with speed vit which is bounded from above by
µ(vi+1

t−1, δ
i
t−1). This upper boundary, whose value depends both on the speed of

the leading vehicle and the distance gap, ensures that there are no collisions
of two cars as we will show below. In our modified model, a car changes its
speed according to the following rule:

vit =


vit−1 + 1 if vit−1 + 1 ≤ µ(vi+1

t−1, δ
i
t−1) and ξ ≤ pacc,

vit−1 if vit−1 + 1 ≤ µ(vi+1
t−1, δ

i
t−1) and ξ > pacc,

µ(vi+1
t−1, δ

i
t−1) otherwise.

(1)

The variable ξ denotes a random number uniformly generated in [0, 1]. Note
that it holds vit−1− 1 ≤ µ(vi+1

t−1, δ
i
t−1) ≤ vit ≤ vit−1 + 1. Hence, acceleration and

braking capabilities are limited, and a car changes its speed by at most ±1.

2.1 Collision Free Driving

We will now determine the values of µ(vi+1
t , δit) for the mNaSch which ensure

that there are no collisions between any two cars. (Valid initial configurations
for open and periodic boundaries are given in appendix A.) We need to
distinguish between two cases:

1. The vehicle i does not have a predecessor. This is only possible in an open
system. In this case the car’s speed is only limited by vmax, the maximum
technical speed of the car. (We assume here vmax = 6.)
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2. The vehicle i does have a predecessor. That means that there is another
car driving ahead of vehicle i. This is always the case in a closed system.
The maximum possible speed of car i at time t depends on (i) the speed
of its predecessor and (ii) the distance to its predecessor at time t− 1.
This is captured by the function µ(vi+1

t , δit) defined as follows:

µ(vi+1
t , δit) = min

{⌊
1

2

√
8δit − 7 + 4vi+1

t

(
vi+1
t − 1

)
− 1

2

⌋
; vmax

}
, (2)

where b·c denotes the floor function and δit the distance between car i and
its predecessor i+ 1 at time t.
The values resulting from Eq. (2) are given in table 1 for various combina-
tions of a vehicle’s headway and speed.

(To some extent this approach is comparable to the work of Emmerich and
Rank [6], who investigated an update mechanism which takes into account
both a vehicle’s space gap and its speed as well. By ignoring the leading
vehicle’s speed this mechanism could not avoid collisions.)

Table 1. The values of the function µ(vi+1
t , δit) for vmax = 6.

vi+1
t / δit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 ≥ 22

0 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
1 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
2 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6
3 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6
4 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6
5 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6
6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Theorem 1. It holds for all times (∀t ∈ N) that for any two cars i, j with
i < j: xit < xjt . This means that there are no collisions at any time.

Proof. From table 1 we see that it holds

µ(vi+1
t−1, δ

i
t−1) < δit−1 + max{vi+1

t−1 − 1, 0} (3)

and therefore (using δit−1 = xi+1
t−1 − xit−1)

xit ≤ xit−1 + µ(vi+1
t−1, δ

i
t−1) < xi+1

t−1 + max{vi+1
t−1 − 1, 0} ≤ xi+1

t , (4)

where we assume without loss of generality that xit < xi+1
t ∀t ∈ N. Therefore,

there are no collisions of any two cars for all times t.

Theorem 2. By the definition of the function µ(v, δ), the braking capabilities
of the cars are limited. This means that the following inequality holds:

µ(vi+1
t , δit) ≥ µ(vi+1

t−1, δ
i
t−1)− 1 ∀t ∈ N. (5)

Proof. The theorem follows directly from the definition of µ(vi+1
t , δit) as shown

in table 1.



4 T. Chmura, B. Herz, F. Knorr, T. Pitz, and M. Schreckenberg

3 Results

To begin our analysis we will present fundamental diagrams for different values
of pacc. For the simulation we used a road length of L = 104 sites and averages
over T = L time steps after a relaxation time of 10T . Densities 0.01 ≤ ρ ≤ 1
were simulated in steps of 0.01 for several values of pacc. The fundamental
diagrams are shown in figure 1(a) and the corresponding average speeds in
1(b).
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Fig. 1. For a periodic boundaries: (a) Fundamental diagram for different values of
pacc. (b) Corresponding average speeds.

Similar to the NaSch, the traffic flow increases rapidly up to a critical
density. The reason is that for smaller densities all vehicles can accelerate to
the maximal speed vmax. Therefore, the flow rate J is given by J = ρ · vmax.

Unlike in the NaSch, traffic flow is not strictly monotonically decreasing
for larger densities. The reason is the major difference between the NaSch and
the mNaSch: as opposed to the NaSch, the mNaSch converges to stable states
where all vehicles move with the same speed v or with two different speeds v
and v − 1. We will refer to the first case as “speed-synchronized flow”. When
varying the system’s density, the latter case can be regarded as a transition
state between two speed-synchronized flows with speeds v and v − 1.

We use the term “speed-synchronized flow” to make clear that these phases
are not necessarily identical with Kerner’s three-phase traffic theory: In early
investigations (e.g., [7]) the synchronized phase was identified as phase where
vehicles travel with nearly identical speeds (even in different lanes) considerably
below their maximum speed. In this sense, our speed-synchronized flow could be
identified as Kerner’s synchronized flow. Yet, more recent studies (summarized
in [8]) have revealed a more complicated structure of synchronized flow.

As an example, figures 2(a) and 2(b) show the synchronization in a randomly
initialized system with ρ = 0.22, pacc = 0.9 and L = 104. Here the system
converges to a stable state of speed-synchronized traffic flow where all cars
have a speed of v = 2. Thereupon, vsfρ,pacc refers to the speed of a stable state
of speed-synchronized flow with given ρ and pacc.



A Simple Cellular Automaton Model with Limited Braking Rule 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8  9  10

sh
ar

e 
o
f 
v
eh

ic
le

s

time step

v=0
v=1
v=2

v=3
v=4
v=5

v=6

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20  40  60  80 100 120 140 160 180 200

sh
ar

e 
o
f 
v
eh

ic
le

s

time step

 
v=0
v=1
v=2

v=3
v=4
v=5
v=6

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

sh
ar

e 
o
f 
v
eh

ic
le

s

density

v=0
v=1
v=2
v=3
v=4
v=5
v=6

(c)

Fig. 2. For periodic boundary conditions one can see (a) the convergence to a stable
state with speed-synchronized flow; time steps 1 to 10; ρ = 0.22, pacc = 0.9 and
L = 104. Each curve shows the percentage of cars with a certain speed. During the
first few time steps cars frequently change their speeds. (b) After 200 time steps
nearly all vehicles travel at a speed of v = 2 or v = 3. (c) The share of vehicles
traveling at a given speed after a sufficient relaxation time (105 timesteps) for all
densities with pacc = 0.9.

We will now examine the relationship between ρ and vsfρ,pacc . We chose
pacc = 0.9 for our analysis because, with this value, the non-monotonical
decrease for densities ρ > ρpacc can be seen particularly well in figure 1(a).

Figure 2(c) shows the share of vehicles with a given speed after 104 time
steps for densities ρ ∈ [0.01, 1] in steps of 0.01. Note that stable states of speed-
synchronized flow with the same vsfρ,0.9 are connected. We can therefore refer
to a region of speed-synchronized flow when we mean a subset of [0.01,1] for
which vsfρ,0.9 is identical. Furthermore, vsfρ,0.9 is monotonically decreasing with
ρ. This is evident, for a higher density implies smaller distances between the
cars in a stable state. Obviously traffic flow in a region of speed-synchronized
flow is increasing with ρ. This is an important finding as it explains why the
fundamental diagram is, in contrast to the fundamental diagram for the NaSch,
not monotonically decreasing for ρ > ρpacc .
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4 Conclusion and Perspectives

The focus of this work was laid on a comparison of the Nagel Schreckenberg
model and our modified version (mNaSch). We showed by means of simulations
that the NaSch converges to either a steady state of speed-synchronized
flow or a steady state with only two different speeds. We regard the latter
case as a transition state between two states of speed-synchronized flow. We
found differences between the fundamental diagrams of the two models. The
fundamental diagrams of the mNaSch model have been shown to be more
complex than those of the NaSch. Traffic flow is not simply increasing until a
certain density is reached and decreases then, but it is moving in waves with
the peak-values decreasing in density. The two principal differences between
the NaSch and the mNaSch are that (i) in the mNaSch braking capabilities
are limited and (ii) vehicles accelerate with a certain probability whereas in
the NaSch vehicles decelerate at random.

A Initial Conditions Guaranteeing Collision Free Driving

The proof of collision free driving (section 2.1) requires that the road’s previous
configuration was free of collisions as well. Therefore, we present valid initial
configurations for both open and periodic boundaries. First, the case of periodic
boundaries: initially, N vehicles are randomly set on the road, and the initial
speed of each vehicle is 0. Consequently, it holds that xi 6= xj for i 6= j and
min(δi) ≥ 1 ∀i. For all later times t, it follows xit = (xit−1 + vit) mod L.

An open system represents a bottleneck situation where each car passes
through the road only once. New cars enter the road via the left boundary,
which requires that the leftmost site (x = 1) is empty. In this case a new
car labeled k can be inserted with speed vkt = min{vin, µ(vk+1

t−1 , x
k+1
t−1 − 1)} at

position xkt = 1 + vkt , where vin = 2 denotes the maximum speed of inserted
cars. Afterwards, we apply the rules of motion to the remaining cars (i.e., all
but the newly inserted one) and obtain the road’s configuration at time t.
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