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Abstract

We present a very simple stochastic traffic cellular automaton (CA) model to reproduce synchronized traffic.
This model aims to be nearly as simple as the well-known Nagel-Schreckenberg model, but to overcome to
shortcomings of the latter: The Nagel-Schreckenberg model (NaSch) and its variants achieve collision-free
driving by explicitly allowing for unlimited braking capabilities. However, it is rather natural to view
the collision-free traffic flow as a consequence of moderate driving instead of infinite braking capabilities.
Therefore, our new CA model limits the vehicles’ acceleration and deceleration rates to realistic values.
Moreover, our model is able to reproduce several important features of synchronized traffic flow.

Earlier models achieve identical goals only by using relatively complicated rules of motion. Our model,
however, introduces slight modifications of the easily comprehensible NaSch. These modifications lead to
very stable states where all vehicles tend to synchronize their speed. Even though, or perhaps precisely
because, the states of synchronized flow are stable in our model, it allows to study several features of this
traffic phase in great detail.
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1. Introduction

In 1992, Nagel and Schreckenberg [1] proposed one of the first stochastic discrete cellular automaton
models of traffic on a one-lane road. Various modifications and extensions such as for the analysis of city
traffic [2], the influence of traffic lights [3], or the application to complex road networks [4, 5] have been
proposed since then (for reviews see, e.g., [6, 7]). The primary criterion to assess these models is their
ability to reproduce empirically observed features of traffic flow [8, 9], which follows from the vehicles’ rules
of motion.

In the Nagel-Schreckenberg model (NaSch), the road is modeled as a one-dimensional array of sites. Each
site is occupied by at most one vehicle. The position of the ith vehicle at time t is denoted by xit and the
position of its immediate predecessor by xi+1

t . A vehicle’s dynamics (i.e., its acceleration and deceleration)
depends on its predecessor on the road. This behavior is implemented by an update scheme in which the
following simple rules are applied to each vehicle in parallel:

1. A car i with speed vit at time t accelerates if the distance to its predecessor δit = xi+1
t −xit is sufficiently

large. That means if δit is larger than vit + 1 then the speed is advanced by one until the car reaches
its maximum speed vmax: vit+1 = min(vit + 1, vmax).

2. If the distance δit is too small (i.e., δit ≤ vit+1), the car reduces its speed to avoid a collision: vit+1 =
min(δit − 1, vit+1).
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3. The car’s speed is decreased by one at random: vt+1 = max(0, vit+1 − 1) with probability 1− pacc.
4. Finally, the vehicle moves from its current position xit to its new position xit+1 = xit + vit+1.

The success of the Nagel-Schreckenberg is based based both on its simplicity and its ability to reproduce
the spontaneous transition from free to congested flow revealing the stochastic nature of a traffic break-
down [10]. The latter is a result of the random deceleration of step 3 which leads to metastable states of
free traffic flow. In this metastable regime, wide moving jams (i.e., waves of stopped vehicles) can sponta-
neously emerge from free flow (F). (Similar observations have been made for many modified versions of the
NaSch [11–13].) Such a transition, however, conflicts with empirical observations: According to Kerner’s
three-phase theory1 of traffic [14, 15] congested traffic divides into two phases, synchronized traffic (S) and
wide moving jams (W); a transition from free to congested traffic always involves a transition to synchronized
traffic (F→S). Therefore, the behavior observed in the NaSch and its successors (F→J) does not correctly
describe the physical characteristics of traffic flow.

The physical properties of the three traffic phases and the relation between them is essential for a
correct understanding of traffic. In particular, the understanding of the synchronized phase (S) is the key
to any progress both in theoretical and application-oriented fields of research [16]. This insight has lead
to the development of models that are based on Kerner’s theory (e.g., [17–19]). These models successfully
reproduce synchronized traffic and the corresponding transitions (F↔S, S↔J). At the same time, they are
quite complex and involve an extensive set of rules.

In this paper, we will present a simple stochastic cellular automaton model that is able to reproduce
synchronized traffic. Moreover, we achieve limited deceleration rates in our model by randomizing the
acceleration step instead of the deceleration step (cf. step 3 of the NaSch). As a consequence, there is no
metastable regime in our model. Even though, or perhaps precisely because, the states of synchronized flow
are stable in our model, it allows to study several features of this traffic phase in great detail.

2. Modified version of the NaSch

First, we will present our modified model (in the following: mNaSch). Let L ∈ N be the number of sites
representing the one-lane road. The discrete variable t denotes the time.

At time t, the car labeled i moves with speed vit which is bounded from above by µ(vi+1
t−1, δ

i
t−1). This

upper boundary, whose value depends both on the speed of the leading vehicle and the distance gap, ensures
that there are no collisions of two cars as we will show below. In our modified model, a car changes its speed
according to the following rule:

vit =


vit−1 + 1 if vit−1 + 1 ≤ µ(vi+1

t−1, δ
i
t−1) and ξ ≤ pacc,

vit−1 if vit−1 + 1 ≤ µ(vi+1
t−1, δ

i
t−1) and ξ > pacc,

µ(vi+1
t−1, δ

i
t−1) otherwise.

(1)

The variable ξ denotes a random number uniformly generated in [0, 1]. Note that it holds vit−1 − 1 ≤ vit ≤
vit−1 + 1. Thereby, acceleration and braking capabilities are limited, and a car changes its speed by at most
±1.

2.1. Collision Free Driving

We will now determine the values of µ(vi+1
t , δit) for the mNaSch which ensure that there are no collisions

between any two cars. (Valid initial configurations for open and periodic boundaries are given in Appendix
A.) We need to distinguish between two cases:

1. The vehicle i does not have a predecessor. This is only possible in an open system. In this case the
car’s speed is only limited by vmax, the maximum technical speed of the car. (For the rest of this
paper we set vmax = 6, but our findings remain valid for other choices of vmax.)

1This theory is solely based on the meticulous analysis of empirical data.
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Table 1: The values of the function µ(vi+1
t , δit) for vmax = 6.

vi+1
t / δit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 ≥ 22

0 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
1 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
2 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6
3 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6
4 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6
5 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6
6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2. The vehicle i does have a predecessor. That means that there is another car driving ahead of vehicle
i. This is always the case in a closed system. The maximum possible speed of car i at time t depends
on (i) the speed of its predecessor and (ii) the distance to its predecessor at time t− 1.
This is captured by the function µ(vi+1

t , δit) defined as follows:

µ(vi+1
t , δit) = min

{⌊
1

2

√
8δit − 7 + 4vi+1

t

(
vi+1
t − 1

)
− 1

2

⌋
; vmax

}
, (2)

where b·c denotes the floor function and δit the distance between car i and its predecessor i+ 1 at time
t.
The values resulting from equation (2) are given in table 1 for various combinations of a vehicle’s
headway and speed.

(To some extent this approach is comparable to the work of Emmerich and Rank [20]. They investigated an
update mechanism which takes into account both a vehicle’s space gap and its speed as well. By ignoring
the leading vehicle’s speed, this mechanism cannot guarantee realistic deceleration rates.)

Theorem 1. It holds for all times (∀t ∈ N) that for any two cars i, j with i < j: xit < xjt . This means that
there are no collisions at any time.

Proof. From table 1 we see that it holds

µ(vi+1
t−1, δ

i
t−1) < δit−1 + max{vi+1

t−1 − 1, 0} (3)

and therefore (using δit−1 = xi+1
t−1 − xit−1)

xit ≤ xit−1 + µ(vi+1
t−1, δ

i
t−1) < xi+1

t−1 + max{vi+1
t−1 − 1, 0} ≤ xi+1

t , (4)

where we assume without loss of generality that xit < xi+1
t ∀t ∈ N. Therefore, there are no collisions of any

two cars for all times t.

To understand the vehicle dynamics in our model, let us look at the values of µ(vi+1
t , δit) in table 1. The

values of µ(vi+1
t , δit) represent a “safe” speed when following a vehicle at a distance δit which has the speed

vi+1
t . The first row, for example, provides the speeds which allow a vehicle to come to rest behind a stopped

vehicle without exceeding the maximum deceleration rate of one cell per time step. (A vehicle i driving with
vmax and δit = 22 will reduce its speed to vit+1 = 6, vit+2 = 5, . . ., vit+7 = 0. The total distance traveled in

this case equals 21 leading to δit+7 = 1.) For any possible configuration, the values provided by µ(vi+1
t , δit)

guarantee that a vehicle can come to rest by reducing its speed by -1 in each time step. Therefore, the
condition vit−1 + 1 ≤ µ(vi+1

t−1, δ
i
t−1) in equation (1) guarantees that a vehicle accelerates only if it safe to do

so. From this follows the limited acceleration rate: vit ≤ vit−1 + 1. Only the last condition in equation (1),

which sets µ(vi+1
t−1, δ

i
t−1) as the new speed vit, may cause a vehicle to decelerate.
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Figure 1: Fundamental diagram in a closed system (i.e., periodic bondaries) for different values of pacc. As illustrated in
fig. 1(b), the reason for the peaks of the fundamental diagrams for pacc > 0.5 are density-regions where the speed remains
(nearly) constant.

Theorem 2. By the definition of the function µ(v, δ), the braking capabilities of the cars are limited. This
means that the following inequality holds:

µ(vi+1
t , δit) ≥ µ(vi+1

t−1, δ
i
t−1)− 1 ∀t ∈ N. (5)

Proof. The theorem follows directly from the definition of µ(vi+1
t , δit) as shown in table 1.

Altogether, we can conclude vit−1 − 1 ≤ vit ≤ vit−1 + 1.

3. Results

In this section we will present results from simulations of the mNaSch. To begin our analysis we will
present fundamental diagrams for different values of pacc. For the simulation we used a road length of
L = 104 sites and averaged over T = L time steps after a relaxation time of 10T . Densities 0.01 ≤ ρ ≤ 1
were simulated in steps of 0.01 for several values of pacc. The fundamental diagrams are shown in figure 1.

Similar to the NaSch, the traffic flow increases rapidly until a certain density ρpacc
is reached and decreases

afterwards. The reason is that for densities ρ < ρpacc
all vehicles can accelerate to the maximal speed vmax.

Therefore, the flow rate J is given by J = ρ · vmax. At higher densities, however, the behavior deviates from
that of the NaSch: for pacc > 0.5 the flow rate does no longer decrease monotonically with an increasing
density, but shows distinct peaks. A comparison with figure 1(b) reveals that the formation of the peaks is
due to density regions, where the vehicles’ average speed is practically independent from the density. The
reason of this the major difference between the NaSch and the mNaSch is that the mNaSch converges to
stable states where all vehicles move with the same speed v (or with two different speeds v and v − 1, as
we will see later). We will refer to the first case as “speed-synchronized flow”. When varying the system’s
density, the latter case can be regarded as a transition state between two speed-synchronized flows with
speeds v and v − 1.

In Figure 2 one can see distribution of vehicle speeds for a given density. It is easy to understand that an
increase of the vehicle density lowers the share of fast driving vehicles; as the average gap between vehicles
decreases with more vehicle on the road, the vehicles have to slow down to conserve collision-freeness.

3.1. Spatiotemporal dynamics

The synchronization between vehicles becomes very clear by analyzing the spatiotemporal dynamics.
Therefore, figure 3 shows the vehicles’ dynamics for pacc = 0.7. The vehicles started from a compact jam
with speed zero. The synchronization of speeds manifests itself by the cancellation of all but one (or at
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Figure 2: The distribution of vehicles’ speed measured after a relaxation time of 105 time steps (pacc = 0.9). For wide
density-regions, we find that all vehicles travel with the same speed. Of course, this results in the plateaus observed in figure
1(b).

most) two distinct speeds. In the case where two speeds predominate simultaneously, wave-like patterns
form which separate groups of vehicles driving with different speeds (figure 3(d)).

We may speak of theses groups as clusters or platoons of vehicles. In contrast to an earlier model [21],
vehicles within such a platoon keep a realistic (i.e., non-zero) safety headway to their predecessor. This can
be seen in figures 3(c) and 3(d) which show the distributions of headways obtained from figures 3(a) and
3(b), respectively.

It is important to note that the two patterns found in figures 3(a) and 3(b) are characteristic for all
densities and various initial conditions (e.g., homogeneous or random placement of cars). Another important
aspect is that due to the model’s stochastic acceleration (instead of stochastic deceleration) jams (so-called
phantom jams) do not occur spontaneously in the mNaSch.

4. Conclusion and Perspectives

The focus of this work was laid on a comparison of the Nagel Schreckenberg model and our modified
version (mNaSch). We showed by means of simulations that the NaSch converges to either a steady state
of speed-synchronized flow or a steady state with only two different speeds. We regarded the latter case
as a transition state between two states of speed-synchronized flow. We found differences between the
fundamental diagrams of the two models. The fundamental diagrams of the mNaSch model have been shown
to be more complex than those of the NaSch. Traffic flow is not simply increasing until a certain density
is reached and decreases then, but it is moving in waves with the peak-values decreasing in density. The
two principal differences between the NaSch and the mNaSch are that i) in the mNaSch braking capabilities
are limited and ii) vehicles accelerate with a certain probability whereas in the NaSch vehicles decelerate at
random.

It is obvious that the latter causes the convergence towards steady states.
To fully understand the dynamics of the mNaSch it would be helpful to examine the convergence to

stable states in an analytical way. It might also be interesting to extend the model: there could be different
maximal technical speeds for the cars. This would lead to a non-linear relationship of density and traffic
flow before the density is reached.

Appendix A. Initial Conditions Guaranteeing Collision Free Driving

The proof of collision free driving in section 2.1 requires, of course, that the road’s previous configuration
was free of collisions as well. Therefore, we present valid initial configurations for both open and periodic
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Figure 3: Spatiotemporal configurations for vehicle densities of (a) ρ = 0.2 and (b) ρ = 0.25 (pacc = 0.7). Blue lines show the
trajectories of two vehicles passing position 0 at times t = 101000 and t = 105400, respectively. The corresponding headway
distribution is given in figures (c) and (d), respectively. These distributions also discriminate between the distance of the
vehicles and their speeds. At ρ = 0.2 all vehicles travel with v = 3, and the distance δ to their predecessor measures either
δ = 6 or δ = 7. At ρ = 0.25, practically all vehicles travel with a speed of v = 2 or v = 3. As one can see, the slower vehicles
also have a lower headway.
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boundaries. Note that the presented configurations are very simple as the focus of this article is on the
model’s dynamics on a circular road. Especially with respect to open boundaries, the modeling of the
boundaries may have a strong impact on the bulk dynamics (e.g., leading to boundary-induced phase
transitions [22] or affecting the maximally achievable flow rate [23]).

The case of periodic boundaries, which represent a circular road, is trivial: initially, N vehicles are
randomly set on the road, and the initial speed of each vehicle is 0. Consequently, it holds that xi 6= xj for
i 6= j and min(δi) ≥ 1 ∀i. Because the road is modelled as a circle, it follows xit = (xit−1 + vit) mod L for
all later times t.

An open system (i.e., open boundaries) represents a bottleneck situation where each car passes through
the road only once. New cars enter the road via the left boundary, which requires that the leftmost site (x =
1) is empty. In this case a new car labeled k can be inserted with speed vkt = min{vmaxin, µ(vk+1

t−1 , x
k+1
t−1 −1)}

at position xkt = 1 + vkt , where vmaxin denotes the maximum speed of inserted cars. (In our simulations
we set vmaxin = 2.) Afterwards, we apply the rules of motion to the remaining cars (i.e., all but the newly
inserted one) and obtain the road’s configuration at time t.

References

[1] Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway traffic. J. Phys. France I, 2(12):2221–2229,
1992.

[2] Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider. Statistical physics of vehicular traffic and some
related systems. Phys. Rep., 329:199–329, 2000.

[3] Robert Barlovic, Thorsten Huisinga, Andreas Schadschneider, and Michael Schreckenberg. Adaptive traffic light control
in the ChSch model for city traffic. In Traffic and Granular Flow, pages 331–336, 2003.

[4] Sigurdur Hafstein, Roland Chrobok, Andreas Pottmeier, Joachim Wahle, and Michael Schreckenberg. Cellular automaton
modeling of the Autobahn traffic in North Rhine-Westphalia. In Proc. 4th MATHMOD, Vienna, 2003.

[5] Andreas Pottmeier, Roland Chrobok, Sigurdur Hafstein, Florian Mazur, and Michael Schreckenberg. OLSIM: Up-to-date
traffic information on the web. In Proc. 3rd IASTED Int. Conf., St. Thomas, 2004.

[6] Sven Maerivoet and Bart De Moor. Cellular automata models of road traffic. Phys. Rep., 419(1):1–64, 2005.
[7] Andreas Schadschneider, Debashish Chowdhury, and Katsuhiro Nishinari. Stochastic Transport in Complex Systems:

From Molecules to Vehicles. Elsevier Science, Oxford, 2010.
[8] Elmar Brockfeld, Reinhart Kühne, Alexander Skabardonis, and Peter Wagner. Toward benchmarking of microscopic traffic

flow models. Transp. Res. Rec., 1852(1):124–129, Jan 2003.
[9] Florian Knorr and Michael Schreckenberg. On the reproducibility of spatiotemporal traffic dynamics with microscopic

traffic models. J. Stat. Mech., 2012(10):P10018, 2012.
[10] Bhagwant Persaud, Sam Yagar, and Russell Brownlee. Exploration of the breakdown phenomenon in freeway traffic.

Transp. Res. Rec., 1634:64–69, 1998.
[11] Robert Barlovic, Ludger Santen, Andreas Schadschneider, and Michael Schreckenberg. Metastable states in cellular

automata for traffic flow. Eur. Phys. J. B, 5(3):793–800, 1998.
[12] Wolfgang Knospe, Ludger Santen, Andreas Schadschneider, and Michael Schreckenberg. Towards a realistic microscopic

description of highway traffic. J. Phys. A, 33(48):L477–L485, 2000.
[13] Florian Knorr and Michael Schreckenberg. The comfortable driving model revisited: traffic phases and phase transitions.

J. Stat. Mech., 2013(7):P07002, 2013.
[14] Boris S. Kerner. The Physics of Traffic. Springer, Berlin, 2004.
[15] Boris S. Kerner. Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory.

Springer, Berlin, 2009.
[16] Boris S. Kerner. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: A

brief review. Physica A, 392(21):5261–5282, 2013.
[17] Boris S. Kerner, Sergey L. Klenov, and Dietrich E. Wolf. Cellular automata approach to three-phase traffic theory. J.

Phys. A, 35(47):9971, 2002.
[18] Hyun Keun Lee, Robert Barlovic, Michael Schreckenberg, and Doochul Kim. Mechanical restriction versus human over-

reaction triggering congested traffic states. Phys. Rev. Lett, 23:238702, 2004.
[19] Boris S. Kerner, Sergey L. Klenov, and Michael Schreckenberg. Simple cellular automaton model for traffic breakdown,

highway capacity, and synchronized flow. Phys. Rev. E, 84:046110, 2011.
[20] Heike Emmerich and Ernst Rank. An improved cellular automaton model for traffic flow simulation. Physica A, 234(3–

4):676–686, 1997.
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